
The use of functions in MATLAB

Ralf Becker

1 Overview

Functions are an essential toolkit in every programming language. They are used to ”outsource”

a piece of code that is so generic that it may be reused on a number of occasions. For it to be

able to be reused it is written such that the things that may change (i.e. different datasets) are

treated in a way that makes them easy to change.

In fact, a good analogy is a drinks vending machine. The box or machine (or in our language,

function) hides a large number of things (computer, mechanics etc.) from the eyes of the user.

All the user does is to provide some input (money and choice of drink), then the machine does its

stuff, and eventually delivers some output, hopefully an ice-cold can of your favourite softdrink.

Here we will do exactly the same. We will write a bit of code that does something useful (in

our case it will calculate an OLS regression). To do that it will require the user to provide some

input. The function will do its work and deliver back some output.

2 Econometric Background

This is not the place to review the Econometric Theory in detail, but to make the context

clearer consider that we are concerned with estimating a regression model

y = Xβ + ε (1)

where y is a (n×1) vector that contains all n observations for the dependent variable and X is a

(n× k) that contains all explanatory variables. The (k× 1) vector β represents the unobserved

population coefficient vector and ε is a (n × 1) vector of unobserved error terms. The OLS

estimator for the unknown parameter vector is of course

β̂ = (X′X)−1X′y (2)

You will also recall that useful associated statistics to such a regression are the standard errors



of β̂, the residual sum of squares and the R2, all of which you can review in the Econometrics

textbook of your choice.

3 Function structure

In general a function will look like this:

function [out1,out2,...] = FunctionName(in1,in2,...)

programming commands;

...

programming commands;

end

We have a set of input variables (in1, in2, etc.) which will be used in a set of calculations

(programming commands). These calculations will use the input variables to calculate some

outputs (out1, out2, etc.). The function then hands back the values for these variables

(out1,out2,...) such that they can be used later in any subsequent calculations.

So, before we continue we need to specify what the inputs ought to be and what outputs we

should expect from our function. The input that is required to estimate a regression is the

following:

• A vector that contains all observations for the dependent variable, y

• A matrix, X that contains all explanatory variables in the columns. This matrix should

have the same number of rows as y.

• (optional) A variable that indicates whether we want the regression output printed into

the MATLAB command window or not.

The function will then estimate a regression and deliver some output. It is of course in the

hands of the programmer (that is you!) to determine what regression outputs you want. For

the sake of this exercise we shall deliver the following

• β̂ (or b below), the vector containing the estimated regression coefficients.

• s
β̂

a (k × 1) vector with the estimated OLS standard errors for β̂ (bse below).

• ε̂, the (n× 1) vector of estimated regression residuals (res below).

• n, the number of observations used.

2



• RSS, the residual sum of squares.

• R2 (or below r2).

4 OLSest in detail

With the above list of in-and outputs we know that our function (which we will call OLSest)

will have the following architecture:

function [b,bse,res,n,rss,r2] = OLSest(y,x,output)

programming commands;

...

programming commands;

end

We will now discuss the core of the function, the programming commands that transform the

input variables

function [b,bse,res,n,rss,r2] = OLSest(y,x,output);

% This function performs an OLS estimation

% input: y, vector with dependent variable

% x, matrix with explanatory variable

% function will automatically add a constant if the first col

% is not a vector of ones

% output, 1 = printed output

% output: b, estimated parameters

% bse, standard errors for bhat

% res, estimated residuals

% n, number of observations used

% rss, residual sum of squares

% r2, Rsquared

All lines beginning with a % are comment lines and you should make it a habit to describe every

function at the beginning and to outline what the required inputs and the outputs are. This is

extremely important to facilitate the re-use of your function. Just imagine you have written a

piece of code a year ago and you want to re-use it now. You will be extremely grateful for any

explanation!

3



[n,k] = size(x);

xxi = inv(x’*x);

b = xxi*x’*y;

These commands establish the dimensions of X, and use formula (2) to estimate the OLS

coefficients which are then stored in b. Note that (X′X)−1 is saved in xxi as it will be used

later (in the calculation of s
β̂
) and as inverting big matrices is computing intensive we will want

to avoid having to do this twice. So saving the result and re-using it is an efficient way to use

the computer’s limited resources.

res = y - x*b;

rss = res’*res;

ssq = rss/(n-k);

s = sqrt(ssq);

bse = ssq*xxi;

bse = sqrt(diag(bse));

ym = y - mean(y);

r2 = 1 - (res’*res)/(ym’*ym);

The commands in this section calculate the residuals (res), the residual sum of squares (rss),

the coefficient estimates standard error (bse) and the regression’s R2 (r2). Again we refer to

standard econometric textbooks for the details of these calculations.

if output

fprintf(’===========================================================\n’);
fprintf(’===== Regression Output ==================================\n’);
fprintf(’Obs used = %4.0f, missing obs = %4.0f \n’,n,(ninit-n));
fprintf(’Rsquared = %5.4f \n’,r2);
fprintf(’===== Estimated Model Parameters ==========================\n’);
fprintf(’= Par se(Par) ==================\n’);
format short;

disp([b bse]);

fprintf(’===== Model Statistics ====================================\n’);
fprintf(’ standard error = %5.4f\n’,sqrt(ssq));
fprintf(’RSS = %5.4f \n’,rss);
fprintf(’===========================================================\n’);
end

This section of the code is only activated if the third input variable output is true or equal to

4



1. In this way the user can control whether she wants this bit printed (likely if you are only

performing a single regression) or not (likely if you are estimating many regressions in some

bigger procedure). This bit also contains a number of commands (like (format) and (fprintf))

which may be unknown to you at this stage, but are useful when printing results to the screen.

Use the MATLAB help function for some more guidance.

The actual example OLSest function in the file OLSest.m is a somewhat expanded version of

this as it also calculates t-statistics, p-values and Durbin-Watson test statistics. But all these

extra stats only appear in the output (if output = 1). It also checks whether the input matrix

X contains a column of constants (and if not adds one) and checks for missing observations.

5 How are functions used?

So far we have described how to write a function and we understand that it is the equivalent

of a drinks machine ready to be used (receiving some inputs and handing back outputs). The

question remains how to use it. The best way to use them is to save the function into a new

mfile (*.m) that has the same file as the function name (here OLSest.m).

Having done that you can use that function (say in a MATLAB script) as demonstrated in the

following code extract:

depvar = ...; % a vector which contains the dependent variable

expvar = ...; % a matrix that contains all explanatory variables in columns,

should include a columns of 1s for constant

[bhat,bhatse,resids,obs,resss,rsq] = OLSest(depvar,expvar,0);

disp(bhat)

As you can see here all input and output variables have names different to those used in the

code of the function itself. Let’s take the first input variable depvar which contains a vector

with the dependent variable. In this script this vector is known as depvar. In this function

call it is handed over to the function and there it adopts the name y as that is the name given

to the first input variable into the function OLSest. Inside the function the variable depvar is

actually unknown. Also note that the first input variable was given the value 0. By doing so we

ensure that the function does not print the regression output. The first output variable is given

the name bhat in the above script. The function OLSest itself actually does not know that

variable. However, it did calculate the OLS parameter estimate, saved it (inside the function

as b and then handed this value back as the first output variable. Here in the script file this is

then known as bhat and you can continue using that value.

5



6 Numerical test example

If you use the data in the OLSexample.xls spreadsheet (column 1 as dependent variable and

columns 2 to 4 as explanatory variables (don’t forget to include a vector of ones as constant)

you should obtain the following OLS parameter estimate:

β̂ =


0.3983

1.0574

−1.9973

0.4953

 (3)

where the first element is the estimated constant and the remaining parameters the OLS esti-

mates associated with the variables in columns two to four respectively.

6


	Overview
	Econometric Background
	Function structure
	OLSest in detail
	How are functions used?
	Numerical test example

