The University of Manchester

ECON61001 Econometric Methods

Lecture 2

Len Gill

Arthur Lewis 3.060

2013-2014

Matrices - revision

- matrices were mentioned in PreSession Maths:
- A matrix is a rectangular array of numbers enclosed in parentheses,
- conventionally denoted by a capital letter.
- the number of rows (say m) and the number of columns (say n) determine the order of the matrix $(m \times n)$.
- examples:
- $P=\left[\begin{array}{lll}2 & 3 & 4 \\ 3 & 1 & 5\end{array}\right], \quad Q=\left[\begin{array}{ll}2 & 3 \\ 4 & 3 \\ 1 & 5\end{array}\right]$
- 2×3 and 3×2 respectively

Matrices and Econometrics

- data sets are matrices ...
- here observations on
- weights and heights of 12 students
$D=\left[\begin{array}{ll}155 & 70 \\ 150 & 63 \\ 180 & 72 \\ 135 & 60 \\ 156 & 66 \\ 168 & 70 \\ 178 & 74 \\ 160 & 65 \\ 132 & 62 \\ 145 & 67 \\ 139 & 65 \\ 152 & 68\end{array}\right]$

Matrix Arithmetic and Matrix Algebra

- calculations using matrices with numerical elements is matrix arithmetic
- calculations using matrices with symbolic elements is matrix algebra
- e.g with $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\end{array}\right]$ or $A=\left[\begin{array}{rrrr}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m 1} & a_{m 2} & \ldots & a_{m n}\end{array}\right]$
- general 2×3 and $m \times n$ matrices
- really want to use the algebra of matrices
- that is algebra with objects that are matrices
- rather than algebra with the elements of matrices
- start with matrix arithmetic
- and build up to the two versions of matrix algebra

Typical element notation for matrices

- for $A=\left[\begin{array}{rrlr}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m 1} & a_{m 2} & \cdots & a_{m n}\end{array}\right], \quad m \times n$
- write $A=\left\|a_{i j}\right\|, \quad i=1, \ldots, m, j=1, \ldots, n$
- $a_{i j}$ is the element in (at the intersection of) the i th row and j th column, e.g. a_{12}
- when $m \neq n, A$ is a rectangular matrix
- when $m=n, A$ is $m \times m$ or $n \times n$, and A is a square matrix
- so a square matrix has the same number of rows and columns

Rows, columns and vectors

- if A is $m \times n, m=1$ or $n=1$ or both is allowed
- if $n=1$, say that A is an $m \times 1$ column vector
- $A=\left[\begin{array}{c}a_{11} \\ \vdots \\ a_{m 1}\end{array}\right]$
- if $m=1, A$ is a $1 \times n$ row vector
- $A=\left[\begin{array}{lll}a_{11} & \ldots & a_{1 n}\end{array}\right]$
- usual to use bold lower case for vectors
- e.g. $\mathbf{x}=\left[\begin{array}{l}6 \\ 3\end{array}\right], \mathbf{a}=\left[\begin{array}{c}a_{11} \\ \vdots \\ a_{m 1}\end{array}\right]$
- if $m=1=n, A=\left[a_{11}\right]=a_{11}$ - both a 1×1 matrix and a real number

Matrices as collections of vectors

- think of $A=\left[\begin{array}{rrrr}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m 1} & a_{m 2} & \ldots & a_{m n}\end{array}\right]$ as a collection of columns
- each column is a column vector (or just a vector)
- e.g. $\mathbf{a}=\left[\begin{array}{l}6 \\ 3\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}2 \\ 5\end{array}\right], 2 \times 1$ vectors
- define $A=\left[\begin{array}{ll}\mathbf{a} & \mathbf{b}\end{array}\right]=\left[\begin{array}{ll}6 & 2 \\ 3 & 5\end{array}\right]$, a 2×2 matrix

Transposition of vectors

- rows of $A=\left[\begin{array}{ll}6 & 2 \\ 3 & 5\end{array}\right]$ are vectors
- $\mathbf{c}=\left[\begin{array}{l}6 \\ 2\end{array}\right], \quad \mathbf{d}=\left[\begin{array}{l}3 \\ 5\end{array}\right] \ldots$ but these are column vectors, not rows
- convert a column vector \mathbf{c} into a row vector by transposition
- the transposed \mathbf{c} is $\mathbf{c}^{T}=\left[\begin{array}{ll}6 & 2\end{array}\right]$
- here ${ }^{T}$ denotes transposition
- sometimes write \mathbf{c}^{\prime} - i.e. use a prime, but easier to lose track of ' in calculations
- stick to the ${ }^{T}$ sign!
- write A in terms of its rows as $A=\left[\begin{array}{l}\mathbf{c}^{T} \\ \mathbf{d}^{T}\end{array}\right]=\left[\begin{array}{ll}6 & 2 \\ 3 & 5\end{array}\right]$
- note that the transpose of \mathbf{c}^{T} is $\mathbf{c}:\left(\mathbf{c}^{T}\right)^{T}=\mathbf{c}$

Operations with vectors

- set $\mathbf{x}=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right], \quad \mathbf{y}=\left[\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right], n \times 1$ (column) vectors
- addition and subtraction defined only for vectors of the same dimensions
$\bullet \mathbf{x}+\mathbf{y}=\left[\begin{array}{c}x_{1}+y_{1} \\ \vdots \\ x_{n}+y_{n}\end{array}\right], \quad \mathbf{x}-\mathbf{y}=\left[\begin{array}{c}x_{1}-y_{1} \\ \vdots \\ x_{n}-y_{n}\end{array}\right]$
- these operations are elementwise
- if \mathbf{x} and \mathbf{y} had different dimensions, there would be some elements left over from the larger dimension vector

Scalar multiplication

- for $\mathbf{x}=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]$
- if λ is a real number or scalar, the product $\lambda \mathbf{x}$ is defined as
- $\lambda \mathbf{x}=\left[\begin{array}{c}\lambda x_{1} \\ \vdots \\ \lambda x_{n}\end{array}\right]$
- every element of \mathbf{x} is multiplied by λ to give $\lambda \mathbf{x}$

Linear combinations of vectors

- addition of vectors and scalar multiplication can be combined to give
- a linear combination of $\mathbf{x}=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right], \quad \mathbf{y}=\left[\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right]$,
- as $\lambda \mathbf{x}+\mu \mathbf{y}=\left[\begin{array}{c}\lambda x_{1} \\ \vdots \\ \lambda x_{n}\end{array}\right]+\left[\begin{array}{c}\mu y_{1} \\ \vdots \\ \mu y_{n}\end{array}\right]=\left[\begin{array}{c}\lambda x_{1}+\mu y_{1} \\ \vdots \\ \lambda x_{n}+\mu y_{n}\end{array}\right]$
- more generally
- the linear combination of vectors $\mathbf{x}, \mathbf{y}, \ldots, \mathbf{z}$ by scalars $\lambda, \mu, \ldots, \nu$ is
- $\lambda \mathbf{x}+\mu \mathbf{y}+\ldots+\nu \mathbf{z}$
- with typical element $\lambda x_{i}+\mu y_{i}+\ldots+\nu z_{i}$
- $\mathbf{x}, \mathbf{y}, \ldots, \mathbf{z}$ must have a common dimension

Linear combinations of matrices

- carry over to matrices - apply to each column of a matrix
- for $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{n}\end{array}\right], B=\left[\begin{array}{lll}\mathbf{b}_{1} & \ldots & \mathbf{b}_{n}\end{array}\right]$, both $m \times n$
- $A+B=\left[\begin{array}{lll}\mathbf{a}_{1}+\mathbf{b}_{1} & \ldots & \mathbf{a}_{n}+\mathbf{b}_{n}\end{array}\right]=\left\|a_{i j}+b_{i j}\right\|$
- $A-B=\left[\begin{array}{lll}\mathbf{a}_{1}-\mathbf{b}_{1} & \ldots & \mathbf{a}_{n}-\mathbf{b}_{n}\end{array}\right]=\left\|a_{i j}-b_{i j}\right\|$
- so addition/subtraction is really elementwise
- scalar multiplication of A by λ is also elementwise
- $\lambda A=\left[\begin{array}{lll}\lambda \mathbf{a}_{1} & \ldots & \lambda \mathbf{a}_{n}\end{array}\right]=\left\|\lambda a_{i j}\right\|$
- the linear combination of A and B by λ and μ is
- $\lambda A+\mu B=\left[\begin{array}{lll}\lambda \mathbf{a}_{1}+\mu \mathbf{b}_{1} & \ldots & \lambda \mathbf{a}_{n}+\mu \mathbf{b}_{n}\end{array}\right]=\left\|\lambda a_{i j}+\mu b_{i j}\right\|$

Example

- $A=\left[\begin{array}{ll}6 & 2 \\ 3 & 5\end{array}\right], \quad B=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$
- $\lambda=1, \mu=-2$
- then
- $\lambda A+\mu B=A-2 B=\left[\begin{array}{ll}4 & 0 \\ 1 & 7\end{array}\right]$

Inner products

- for two vectors \mathbf{a} and \mathbf{x}, with \mathbf{a} written as a row vector,
- $\mathbf{a}^{T}=\left[\begin{array}{lll}a_{1} & \ldots & a_{n}\end{array}\right], \mathbf{x}=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]$
- the product $\mathbf{a}^{T} \mathbf{x}$ is called the inner product
- it is defined as $\mathbf{a}^{T} \mathbf{x}=a_{1} x_{1}+\ldots+a_{n} x_{n}$
- usually called the across and down rule
- multiply together corresponding elements in \mathbf{a}^{T} and \mathbf{x}, and add up the products
- result of $\mathbf{a}^{T} \mathbf{x}$ is a real number
- e.g.
$\mathbf{c}^{T}=\left[\begin{array}{ll}6 & 2\end{array}\right], \mathbf{x}=\left[\begin{array}{l}6 \\ 3\end{array}\right], \mathbf{c}^{T} \mathbf{x}=\left[\begin{array}{ll}6 & 2\end{array}\right]\left[\begin{array}{l}6 \\ 3\end{array}\right]=36+6=42$
- for $\mathbf{a}^{T} \mathbf{x}$ to be defined, \mathbf{a} and \mathbf{x} must both be $n \times 1$
- so for $\mathbf{b}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}6 \\ 3\end{array}\right]$
- $\mathbf{b}^{T} \mathbf{x}$ is not defined

Orthogonality

- if \mathbf{x} and \mathbf{y} are such that
- $x^{T} \mathbf{y}=0$,
- \mathbf{x} and \mathbf{y} are orthogonal to each other
- e.g. $\mathbf{x}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \quad \mathbf{y}=\left[\begin{array}{r}-1 \\ 1\end{array}\right]$, $\mathbf{x}^{T} \mathbf{y}=0$

- arrows represent the vectors
- the vectors are at right angles to each other

Matrix vector products

- write $A=\left[\begin{array}{ll}6 & 2 \\ 3 & 5\end{array}\right]=\left[\begin{array}{l}\alpha_{1}^{T} \\ \alpha_{2}^{T}\end{array}\right]$ i.e. through its rows
- given $\mathbf{x}=\left[\begin{array}{l}6 \\ 3\end{array}\right]$, two possible inner products,
- $\alpha_{1}^{T} \mathbf{x}=42, \quad \alpha_{2}^{T} \mathbf{x}=33$
- assemble into 2×1 vector - defines the product $A \mathbf{x}$
- $\boldsymbol{A} \mathbf{x}=\left[\begin{array}{ll}6 & 2 \\ 3 & 5\end{array}\right]\left[\begin{array}{l}6 \\ 3\end{array}\right]=\left[\begin{array}{l}\alpha_{1}^{T} \mathbf{x} \\ \alpha_{2}^{T} \mathbf{x}\end{array}\right]=\left[\begin{array}{l}42 \\ 33\end{array}\right]$
- numerically, $\left[\begin{array}{ll}6 & 2 \\ 3 & 5\end{array}\right]\left[\begin{array}{l}6 \\ 3\end{array}\right]=\left[\begin{array}{l}42 \\ 33\end{array}\right]$
- is an across and down rule
- notice that the row dimension of $A \mathbf{x}$ is that of A

Linear combinations of columns

- another perspective on $A \mathbf{x}=\left[\begin{array}{ll}6 & 2 \\ 3 & 5\end{array}\right]\left[\begin{array}{l}6 \\ 3\end{array}\right]=\left[\begin{array}{l}42 \\ 33\end{array}\right]$
- $A \mathbf{x}=6\left[\begin{array}{l}6 \\ 3\end{array}\right]+3\left[\begin{array}{l}2 \\ 5\end{array}\right]$ is a linear combination of the columns of A
- more generally, if $A=\left[\begin{array}{ll}\mathbf{a} & \mathbf{b}\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}\lambda \\ \mu\end{array}\right]$
- then $A \mathbf{x}=\lambda \mathbf{a}+\mu \mathbf{b}$
- even more generally \ldots an $m \times n$ matrix A is a collection of columns,
- $A=\left[\begin{array}{rrrr}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m 1} & a_{m 2} & \ldots & a_{m n}\end{array}\right]=\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{n}\end{array}\right]$
- If \mathbf{x} is an $n \times 1$ vector, by the across and down rule,
- $A \mathbf{x}=\left[\begin{array}{rrlr}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m 1} & a_{m 2} & \ldots & a_{m n}\end{array}\right]\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$
- $A \mathbf{x}=\left[\begin{array}{c}a_{11} x_{1}+\ldots+a_{1 n} x_{n} \\ a_{21} x_{1}+\ldots+a_{2 n} x_{n} \\ \vdots \\ a_{m 1} x_{1}+\ldots+a_{m n} x_{n}\end{array}\right]=\left[\begin{array}{c}\sum_{j=1}^{n} a_{1 j} x_{j} \\ \sum_{j=1}^{n} a_{2 j} x_{j} \\ \vdots \\ \sum_{j=1}^{n} a_{m j} x_{j}\end{array}\right]$
- the i th element of $A \mathbf{x}$ is $\sum_{j=1}^{n} a_{i j} x_{j}$
- $A \mathbf{x}$ is an $m \times 1$ vector
- as a linear combination of the columns of A, where
- $A=\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{n}\end{array}\right], \mathbf{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$
- $A \mathbf{x}=\mathbf{a}_{1} x_{1}+\ldots+\mathbf{a}_{n} x_{n}=\sum_{j=1}^{n} \mathbf{a}_{j} x_{j}=\left[\begin{array}{c}\sum_{j=1}^{n} a_{1 j} x_{j} \\ \sum_{j=1}^{n} a_{2 j} x_{j} \\ \vdots \\ \sum_{j=1}^{n} a_{m j} x_{j}\end{array}\right]$

Matrix - matrix products

- $A=\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{n}\end{array}\right], m \times n, B=\left[\begin{array}{llll}\mathbf{b}_{1} & \mathbf{b}_{2} & \ldots & \mathbf{b}_{r}\end{array}\right], n \times r$
- each $A \mathbf{b}_{i}$ exists and is $m \times 1$
- arrange products as columns of matrix $C=\left[\begin{array}{llll}A \mathbf{b}_{1} & A \mathbf{b}_{2} & \ldots & A \mathbf{b}_{r}\end{array}\right]$
- define this matrix C as the product $A B$, an $m \times r$ matrix
- and create an across and down rule for defining C
- $B=\left[\begin{array}{rrlr}b_{11} & b_{12} & \ldots & b_{1 r} \\ b_{21} & b_{22} & \ldots & b_{2 r} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n 1} & b_{n 2} & \ldots & b_{n r}\end{array}\right]=\left\|b_{i k}\right\|, \quad i=1, \ldots, n, k=1, \ldots, r$
- the k th column of C is $A \mathbf{b}_{k}$
- typical element of C is obtained as inner product of i th row of A
- [$\left[\begin{array}{llll}a_{i 1} & a_{i 2} & \ldots & a_{i n}\end{array}\right]$, with the elements of \mathbf{b}_{k}
- $a_{i 1} b_{1 k}+a_{i 2} b_{2 k}+\ldots+a_{i n} b_{n k}=\sum_{j=1}^{n} a_{i j} b_{j k}$
- $a_{i 1} b_{1 k}+a_{i 2} b_{2 k}+\ldots+a_{i n} b_{n k}=\sum_{j=1}^{n} a_{i j} b_{j k}$
- is the ikth element of C
- arises from the across and down argument in
- $C=A B=$

$$
\left[\begin{array}{rrlr}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{i 1} & a_{i 2} & \ldots & a_{i n} \\
\vdots & \vdots & & \vdots
\end{array}\right]\left[\begin{array}{rrrrrr}
b_{11} & b_{12} & \ldots & b_{1 k} & \ldots & b_{1 r} \\
b_{21} & b_{22} & \ldots & b_{2 k} & \ldots & b_{2 r} \\
\vdots & \vdots & & \vdots & & \vdots \\
b_{n 1} & b_{n 2} & \ldots & b_{n k} & \ldots & b_{n r}
\end{array}\right]
$$

- in typical element notation, $C=\left\|\sum_{j=1}^{n} a_{i j} b_{j k}\right\|$
- simple ideas, but a lot of detail, numerical examples inevitably tedious
- need to do hand calculations to start with
- but end up by using computer - Matlab

Examples

- $A=\left[\begin{array}{ll}6 & 2 \\ 3 & 5\end{array}\right]=\left[\begin{array}{ll}\mathbf{x} & \mathbf{y}\end{array}\right]$
- sum and difference of \mathbf{x} and \mathbf{y} as matrix vector products are
- $\mathbf{x}+\mathbf{y}=\left[\begin{array}{ll}6 & 2 \\ 3 & 5\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}8 \\ 8\end{array}\right]$
- $\mathbf{x - y}=\left[\begin{array}{ll}6 & 2 \\ 3 & 5\end{array}\right]\left[\begin{array}{r}1 \\ -1\end{array}\right]=\left[\begin{array}{r}4 \\ -2\end{array}\right]$
- set $B=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]=\left[\begin{array}{ll}\mathbf{b}_{1} & \mathbf{b}_{2}\end{array}\right]$ to contain the linear combination coefficients
- then $C=A B=\left[\begin{array}{ll}6 & 2 \\ 3 & 5\end{array}\right]\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]=\left[\begin{array}{cc}8 & 4 \\ 8 & -2\end{array}\right]$

Conformable Matrices

- if A is $m \times n, B$ must be $n \times r$ for the product $A B$ to be defined,
- so that $m \times n: n \times r$ produces an $m \times r$ matrix
- say that A and B are conformable in this case
- key point is that if the number of columns of A is not equal to the number of rows of B, then the inner product calculations required are not defined

Overview

- matrix arithmetic viewpoint good to see the ideas working
- but the elementwise approach to matrix multiplication is not good for
- matrix algebra
- the linear combination of columns perspective is much more useful
- note the conformability requirement
- for $A B$ to be defined,
- A must have the same number of columns
- as there are rows in B
- Matlab is very useful for these matrix calculations - lecture notes give some examples

Pre and post multiplication

- If $C=A B, B$ is pre-multiplied by A, and A is post-multiplied by B
- suppose that $A B$ and $B A$ are both defined
- if A is $m \times n, B$ must be $n \times r$ to get $A B, m \times r$
- to get $B A$ with $A m \times n, B$ must be $n \times m$ - i.e. $r=m$
- $A B$ is then $m \times m, B A$ is $n \times n$
- but different sized matrices cannot be equal
- e.g. $B_{2} C=\left[\begin{array}{rr}6 & -3 \\ 2 & 5 \\ -3 & 1\end{array}\right]\left[\begin{array}{rrr}6 & 2 & -3 \\ 3 & 5 & -1\end{array}\right]=\left[\begin{array}{rrr}27 & -3 & -15 \\ 27 & 29 & -11 \\ -15 & -1 & 8\end{array}\right]$
- $C B_{2}=\left[\begin{array}{lll}6 & 2 & -3 \\ 3 & 5 & -1\end{array}\right]\left[\begin{array}{rr}6 & -3 \\ 2 & 5 \\ -3 & 1\end{array}\right]=\left[\begin{array}{cc}49 & -11 \\ 31 & 15\end{array}\right]$
- even when $m=n$ so that $A B$ and $B A$ are both $m \times m$
- $A B$ and $B A$ are not necessarily equal
- e.g. $A=\left[\begin{array}{ll}6 & 2 \\ 3 & 5\end{array}\right], \quad B=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$
- $A B=\left[\begin{array}{cc}8 & 4 \\ 8 & -2\end{array}\right], \quad B A=\left[\begin{array}{cc}9 & 7 \\ 3 & -3\end{array}\right]$
- in cases where $A B=B A, A$ and B are said to commute

Transposition

- convert column vector \mathbf{x} to row vector \mathbf{x}^{T} by transposition
- $\mathbf{x}=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right], \quad \mathbf{x}^{T}=\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right]$
- transpose \mathbf{x}^{T} as $\left(\mathbf{x}^{T}\right)^{T}$ to recover \mathbf{x}
- for an $m \times n$ matrix $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{n}\end{array}\right]$ the transpose of A, A^{T}, is the matrix whose rows are the columns of A transposed
- $A^{T}=\left[\begin{array}{c}\mathbf{a}_{1}^{T} \\ \vdots \\ \mathbf{a}_{n}^{T}\end{array}\right], n \times m$
- if the rows of A^{T} are transposed columns of $A \ldots$
- then, elementwise, $A=\left[\begin{array}{rrrr}a_{11} & a_{12} & \ldots & a_{1 n} \\ \vdots & \vdots & & \vdots \\ a_{i 1} & a_{i 2} & \ldots & a_{i n} \\ \vdots & \vdots & & \vdots \\ a_{m 1} & a_{m 2} & \ldots & a_{m n}\end{array}\right]$,
- is transposed to $A^{T}=\left[\begin{array}{rrrrr}a_{11} & \ldots & a_{i 1} & \ldots & a_{m 1} \\ a_{12} & \ldots & a_{i 2} & \ldots & a_{m 2} \\ \vdots & & \vdots & & \vdots \\ a_{1 n} & \ldots & a_{i n} & \ldots & a_{m n}\end{array}\right]$
- so (i, j) element of A is the (j, i) element of A^{T}
- what about transposing A^{T} ?
- write rows as columns so that $\left(A^{T}\right)^{T}=A$

Product rule for transposition

- ... states that if $C=A B$, then $C^{T}=B^{T} A^{T}$, example 'proof' in lecture notes
- to transpose $A B$, transpose terms from right to left
- e.g. $A=\left[\begin{array}{ll}6 & 2 \\ 3 & 5\end{array}\right], A^{T}=\left[\begin{array}{ll}6 & 3 \\ 2 & 5\end{array}\right]$
- $B=\left[\begin{array}{cc}1 & 1 \\ 2 & -1\end{array}\right], B^{T}=\left[\begin{array}{cc}1 & 2 \\ 1 & -1\end{array}\right]$
- $C=A B=\left[\begin{array}{cc}10 & 4 \\ 13 & -2\end{array}\right], C^{T}=\left[\begin{array}{cc}10 & 13 \\ 4 & -2\end{array}\right]$
- $B^{T} A^{T}=\left[\begin{array}{cc}1 & 2 \\ 1 & -1\end{array}\right]\left[\begin{array}{ll}6 & 3 \\ 2 & 5\end{array}\right]=\left[\begin{array}{cc}10 & 13 \\ 4 & -2\end{array}\right]$

Coordinate vectors

- vectors of the form
- $\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]$ in 2 dimensions, $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ in 3
dimensions
- $\left[\begin{array}{c}1 \\ 0 \\ \vdots \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots \\ 0\end{array}\right], \ldots,\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 0 \\ 1\end{array}\right]$ in n dimensions
- are called coordinate vectors
- characteristic notation, $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$, in n dimensions
- also a characteristic pattern of elements

Zero and identity matrices

- the zero matrix has every element equal to zero: $0=\|0\|$
- but what is the dimension? if $m \times n$, can write $0_{m n}$ - but usually omitted
- effects: turns any matrix into the zero matrix, $0 A=0, \quad B 0=0$
- identity or unit matrix is formed from coordinate vectors
- 2 dimensions: $\left[\begin{array}{ll}\mathbf{e}_{1} & \mathbf{e}_{2}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=l_{2}$
- 3 dimensions: $\left[\begin{array}{lll}\mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3}\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=I_{3}$
- n dimensions: $\left[\begin{array}{llll}\mathbf{e}_{1} & \mathbf{e}_{2} & \ldots & \mathbf{e}_{n}\end{array}\right]=\left[\begin{array}{cccc}1 & 0 & \ldots & 0 \\ 0 & 1 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 1\end{array}\right]=I_{n}$
- characteristic pattern of $1^{\prime} \mathrm{s}$ on the diagonal, zeros elsewhere
- effects? use $A=\left[\begin{array}{ll}6 & 2 \\ 3 & 5\end{array}\right]$
- $I_{2} A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}6 & 2 \\ 3 & 5\end{array}\right]=\left[\begin{array}{ll}6 & 2 \\ 3 & 5\end{array}\right]=A$
- $A I_{2}=\left[\begin{array}{ll}6 & 2 \\ 3 & 5\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}6 & 2 \\ 3 & 5\end{array}\right]=A$
- any matrix is left unchanged by pre or post multiplication by a suitable I_{n}
- hence the name identity matrix, always a square matrix

Diagonal matrices

- diagonal matrix: every element zero except on the diagonal
- usually square, e.g. $D=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$
- characteristic effects ... $A=\left[\begin{array}{ll}6 & 2 \\ 3 & 5\end{array}\right], B=\left[\begin{array}{cc}2 & 0 \\ 0 & -2\end{array}\right]$
- $A B=\left[\begin{array}{ll}6 & 2 \\ 3 & 5\end{array}\right]\left[\begin{array}{cc}2 & 0 \\ 0 & -2\end{array}\right]=\left[\begin{array}{cc}12 & -4 \\ 6 & -10\end{array}\right]$
- $B A=\left[\begin{array}{cc}2 & 0 \\ 0 & -2\end{array}\right]\left[\begin{array}{ll}6 & 2 \\ 3 & 5\end{array}\right]=\left[\begin{array}{cc}12 & 4 \\ -6 & -10\end{array}\right]$
- post multiplication multiplies each column of A by the corresponding diagonal element
- pre multiplication multiplies each row by the corresponding diagonal element

Symmetric matrices

- A is symmetric if $A=A^{T}$, so a symmetric matrix must be square
- e.g. $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right], \quad A^{T}=\left[\begin{array}{lll}a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33}\end{array}\right]$
- equality of matrices is equality of all elements - ok on the diagonal
- for the off diagonal elements, must have
- $a_{12}=a_{21}, \quad a_{13}=a_{31}, \quad a_{23}=a_{32}$
- more generally, $a_{i j}=a_{j i} \quad$ for $i \neq j$
- for a symmetric matrix, the triangle of above diagonal elements coincides with the triangle of below diagonal elements
- e.g. $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$

A common symmetric matrix

- e.g $C=\left[\begin{array}{lll}6 & 2 & -3 \\ 3 & 5 & -1\end{array}\right]$, compute $C^{T} C$
- $C^{T} C=\left[\begin{array}{cc}6 & 3 \\ 2 & 5 \\ -3 & -1\end{array}\right]\left[\begin{array}{rrr}6 & 2 & -3 \\ 3 & 5 & -1\end{array}\right]=\left[\begin{array}{rrr}45 & 27 & -21 \\ 27 & 29 & -11 \\ -21 & -11 & 10\end{array}\right]$
- general result here: if A is $m \times n$, then $A^{T} A$ is symmetric, $n \times n$
- proof using product rule for transposition
- $\left(A^{T} A\right)^{T}=A^{T}\left(A^{T}\right)^{T}=A^{T} A$
- such symmetric matrices appear a lot in econometrics
- can see that all diagonal matrices are symmetric

The outer product

- $\mathbf{x}, \mathbf{y}, n \times 1$, inner product $\mathbf{x}^{T} \mathbf{y}$ is 1×1, a scalar
- what about the product $\mathbf{x x}^{T}$? $n \times 1: 1 \times n$ should give $n \times n$?
- i.e. an $n \times n$ matrix
- what does the across and down rule say?
- e.g. $\mathbf{x x}^{T}=\left[\begin{array}{l}6 \\ 3\end{array}\right]\left[\begin{array}{ll}6 & 3\end{array}\right]$
- $\mathbf{x x}^{T}=\left[\begin{array}{cc}36 & 18 \\ 18 & 9\end{array}\right]$, a symmetric matrix
- if \mathbf{x} is $n \times 1$ and \mathbf{y} is $m \times 1, \mathbf{x y}^{\top}$ is $n \times m$
- $\mathbf{x y}^{T}=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]\left[\begin{array}{lll}y_{1} & \ldots & y_{m}\end{array}\right]=\left[\begin{array}{cccc}x_{1} y_{1} & x_{1} y_{2} & \ldots & x_{1} y_{m} \\ x_{2} y_{1} & x_{2} y_{2} & \ldots & x_{2} y_{m} \\ & & \vdots & \\ x_{n} y_{1} & x_{n} y_{2} & \ldots & x_{n} y_{m}\end{array}\right]$
- examples with $\mathbf{1}$, a vector with every element 1 , are interesting
- $\mathbf{1}$ is often called the sum vector
- $\mathbf{1}_{2}^{T} \mathbf{x}=\left[\begin{array}{ll}1 & 1\end{array}\right]\left[\begin{array}{l}6 \\ 3\end{array}\right]=9$, the sum of the elements of \mathbf{x}
- easy to turn into sample mean of elements of \mathbf{x}
- ... divide by number of elements in \mathbf{x}
- outer products with 1 ...
- $\mathbf{1}_{2} \mathbf{x}^{T}=\left[\begin{array}{l}1 \\ 1\end{array}\right]\left[\begin{array}{ll}6 & 3\end{array}\right]=\left[\begin{array}{ll}6 & 3 \\ 6 & 3\end{array}\right]$
- $\mathbf{x 1}_{2}^{T}=\left[\begin{array}{l}6 \\ 3\end{array}\right]\left[\begin{array}{ll}1 & 1\end{array}\right]=\left[\begin{array}{ll}6 & 6 \\ 3 & 3\end{array}\right]$
- so premultiplication by $\mathbf{1}$ repeats \mathbf{x}^{T} as rows of product
- postmultiplication by $\mathbf{1}$ repeats \mathbf{x} as columns of product
- notice that $\mathbf{1}_{n} \mathbf{1}_{n}^{T}=\left[\begin{array}{ccc}1 & \ldots & 1 \\ & \vdots & \\ 1 & \ldots & 1\end{array}\right]$ - useful in econometrics

Triangular matrices

- $A=\left[\begin{array}{rrr}a_{11} & 0 & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & a_{33}\end{array}\right]$ is a lower triangular matrix because all
elements above the diagonal are zero
- lower triangular matrices are usually square, but rectangular versions permitted
- A^{T} is an upper triangular matrix, with all elements below the diagonal zero
- unit triangular matrices have diagonal elements all equal to 1
- e.g. $A=\left[\begin{array}{lll}1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$

Partitioned matrices

- can be helpful organise blocks of elements of a matrix into matrices - e.g.
$B=\left[\begin{array}{llll}1 & 2 & 0 & 0 \\ 8 & 3 & 0 & 0 \\ 0 & 0 & 7 & 4 \\ 0 & 0 & 6 & 5\end{array}\right]=\left[\begin{array}{cc}B_{11} & 0 \\ 0 & B_{22}\end{array}\right]$
- where the blocks are 2×2 matrices
- B is a partitioned matrix

More examples

- $A, m \times n$ with $A=\left[\begin{array}{lll}A_{11} & A_{12} & A_{23} \\ A_{21} & A_{22} & A_{23}\end{array}\right]$
- a partition of A into r rows and $m-r$ rows,
- 3 columns, 4 columns and $n-7$ columns
- $A_{11}: r \times 3, A_{12}: r \times 4, A_{13}: r \times(n-7)$
- $A_{21}:(m-r) \times 3, A_{22}:(m-r) \times 4, A_{23}:(m-r) \times(n-7)$
- another example: $A=\left[\begin{array}{lll}A_{1} & A_{2} & A_{3}\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}\mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \mathbf{x}_{3}\end{array}\right]$
- A is $m \times\left(n_{1}: n_{2}: n_{3}\right)$
- for $A \mathbf{x}$ to exist, \mathbf{x}_{1} must be $n_{1} \times 1, \mathbf{x}_{2} n_{2} \times 1$ and $\mathbf{x}_{3} n_{3} \times 1$
- then $A_{1} \mathbf{x}_{1}, A_{2} \mathbf{x}_{2}$ and $A_{3} \mathbf{x}_{3}$ are all $m \times 1$
- if A is $m \times n$ and $\mathbf{x} n \times 1$, typical element of $A \mathbf{x}$ is $\sum_{j=1}^{n} a_{i j} x_{j}$
- by the across and down rule, break up summation into three components
- the part from the first n_{1} columns of $A, \sum_{j=1}^{n_{1}} a_{i j} x_{j}$, corresponds to $A_{1} \mathbf{x}_{1}$
- the part from the next n_{2} columns of $A, \sum_{j=n_{1}+1}^{n_{1}+n_{2}} a_{i j} x_{j}$, corresponds to $A_{2} \mathrm{x}_{2}$
- the part from the last n_{3} columns of $A, \sum_{j=n_{1}+n_{2}+1}^{n} a_{i j} x_{j}$, corresponds to $A_{3} \mathrm{x}_{3}$
- clear that $A \mathbf{x}=A_{1} \mathbf{x}_{1}+A_{2} \mathbf{x}_{2}+A_{3} \mathbf{x}_{3}$
- a natural generalisation of the across and down rule
- but each component product has to be conformable
- another example with $A=\left[\begin{array}{lll}A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23}\end{array}\right]$ and $B=\left[\begin{array}{l}B_{11} \\ B_{21} \\ B_{31}\end{array}\right]$
- A submatrix dimensions
- $\left[\begin{array}{rrr}r \times 3 & r \times 4 & r \times(n-7) \\ (m-r) \times 3 & (m-r) \times 4 & (m-r) \times(n-7)\end{array}\right]$
- $A B=\left[\begin{array}{lll}A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23}\end{array}\right]\left[\begin{array}{l}B_{11} \\ B_{21} \\ B_{31}\end{array}\right]$
- $A B=\left[\begin{array}{l}A_{11} B_{11}+A_{12} B_{21}+A_{13} B_{31} \\ A_{21} B_{11}+A_{22} B_{21}+A_{23} B_{31}\end{array}\right]$
- what must the dimensions of the submatrices in B be for this to be defined?
- B_{11}, B_{21}, B_{31} must have the same number of columns
- B_{11} must have 3 rows, $B_{21} 4$ rows and $B_{31} n-7$ rows

Matrices, vectors and econometrics

- regress weight on height: $y_{i}=\alpha+\beta x_{i}+u_{i}$,
- think of D as $D=\left[\begin{array}{ll}\mathbf{y} & \mathbf{x}\end{array}\right]$ say,
- define $\mathbf{1}_{12}=\left[\begin{array}{c}1 \\ \vdots \\ 1\end{array}\right], \mathbf{u}=\left[\begin{array}{c}u_{1} \\ \vdots \\ u_{12}\end{array}\right]$
- ua 12×1 vector of error terms
- regression model is $\mathbf{y}=\mathbf{1}_{12} \alpha+\mathbf{x} \beta+\mathbf{u}$
- combine components:

$$
X=\left[\begin{array}{ll}
\mathbf{1}_{12} & \mathbf{x}
\end{array}\right], \boldsymbol{\delta}=\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]
$$

- data matrix representation is $\mathbf{y}=X \boldsymbol{\delta}+\mathbf{u}$
$D=\left[\begin{array}{ll}155 & 70 \\ 150 & 63 \\ 180 & 72 \\ 135 & 60 \\ 156 & 66 \\ 168 & 70 \\ 178 & 74 \\ 160 & 65 \\ 132 & 62 \\ 145 & 67 \\ 139 & 65 \\ 152 & 68\end{array}\right]$

