
ECON61001 Econometric Methods
Lecture 2

Len Gill

Arthur Lewis 3.060

2013-2014

Len Gill (Arthur Lewis 3.060) ECON61001 Econometric Methods 2013-2014 1 / 45



Matrices - revision

Matrices - revision

matrices were mentioned in PreSession Maths:

A matrix is a rectangular array of numbers enclosed in parentheses,

conventionally denoted by a capital letter.

the number of rows (say m) and the number of columns (say n)
determine the order of the matrix (m × n).

examples:

P =

[
2 3 4
3 1 5

]
, Q =

 2 3
4 3
1 5


2× 3 and 3× 2 respectively
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Matrices and Econometrics

Matrices and Econometrics

data sets are matrices ...

here observations on

weights and heights of 12
students

D =



155 70
150 63
180 72
135 60
156 66
168 70
178 74
160 65
132 62
145 67
139 65
152 68


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Matrix Arithmetic and Matrix Algebra

Matrix Arithmetic and Matrix Algebra

calculations using matrices with numerical elements is matrix
arithmetic

calculations using matrices with symbolic elements is matrix algebra

e.g with A =

[
a11 a12 a13
a21 a22 a23

]
or A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn


general 2× 3 and m × n matrices

really want to use the algebra of matrices

that is algebra with objects that are matrices

rather than algebra with the elements of matrices

start with matrix arithmetic

and build up to the two versions of matrix algebra
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Typical element notation for matrices

Typical element notation for matrices

for A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

 , m × n

write A = ‖aij‖ , i = 1, ...,m, j = 1, ..., n

aij is the element in (at the intersection of) the ith row and jth
column, e.g. a12

when m 6= n, A is a rectangular matrix

when m = n, A is m ×m or n × n, and A is a square matrix

so a square matrix has the same number of rows and columns

Len Gill (Arthur Lewis 3.060) ECON61001 Econometric Methods 2013-2014 5 / 45



Rows, columns and vectors

Rows, columns and vectors

if A is m × n, m = 1 or n = 1 or both is allowed

if n = 1, say that A is an m × 1 column vector

A =

 a11
...

am1


if m = 1, A is a 1× n row vector

A =
[
a11 . . . a1n

]
usual to use bold lower case for vectors

e.g. x =

[
6
3

]
, a =

 a11
...

am1


if m = 1 = n, A = [a11] = a11 - both a 1×1 matrix and a real number
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Matrices as collections of vectors

Matrices as collections of vectors

think of A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

 as a collection of columns

each column is a column vector (or just a vector)

e.g. a =

[
6
3

]
, b =

[
2
5

]
, 2× 1 vectors

define A =
[
a b

]
=

[
6 2
3 5

]
, a 2× 2 matrix
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Transposition of vectors

Transposition of vectors

rows of A =

[
6 2
3 5

]
are vectors

c =

[
6
2

]
, d =

[
3
5

]
... but these are column vectors, not rows

convert a column vector c into a row vector by transposition

the transposed c is cT =
[

6 2
]

here T denotes transposition

sometimes write c′ - i.e. use a prime, but easier to lose track of ′ in
calculations

stick to the T sign!

write A in terms of its rows as A =

[
cT

dT

]
=

[
6 2
3 5

]
note that the transpose of cT is c :

(
cT
)T

= c
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Operations with vectors

Operations with vectors

set x =

 x1
...
xn

 , y =

 y1
...
yn

 , n × 1 (column) vectors

addition and subtraction defined only for vectors of the same
dimensions

x + y =

 x1 + y1
...

xn + yn

 , x− y =

 x1 − y1
...

xn − yn


these operations are elementwise

if x and y had different dimensions, there would be some elements left
over from the larger dimension vector
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Scalar multiplication

Scalar multiplication

for x =

 x1
...
xn


if λ is a real number or scalar, the product λx is defined as

λx =

 λx1
...
λxn


every element of x is multiplied by λ to give λx
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Linear combinations of vectors

Linear combinations of vectors

addition of vectors and scalar multiplication can be combined to give

a linear combination of x =

 x1
...
xn

 , y =

 y1
...
yn

 ,
as λx + µy =

 λx1
...
λxn

+

 µy1
...
µyn

 =

 λx1 + µy1
...

λxn + µyn


more generally

the linear combination of vectors x, y, . . . , z by scalars λ, µ, . . . , ν is

λx + µy + . . .+ νz

with typical element λxi + µyi + . . .+ νzi

x, y, . . . , z must have a common dimension
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Linear combinations of matrices

Linear combinations of matrices

carry over to matrices - apply to each column of a matrix

for A =
[
a1 . . . an

]
, B =

[
b1 . . . bn

]
, both m × n

A + B =
[
a1 + b1 . . . an + bn

]
= ‖aij + bij‖

A− B =
[
a1 − b1 . . . an − bn

]
= ‖aij − bij‖

so addition/subtraction is really elementwise

scalar multiplication of A by λ is also elementwise

λA =
[
λa1 . . . λan

]
= ‖λaij‖

the linear combination of A and B by λ and µ is

λA + µB =
[
λa1 + µb1 . . . λan + µbn

]
= ‖λaij + µbij‖
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Example

Example

A =

[
6 2
3 5

]
, B =

[
1 1
1 −1

]
λ = 1, µ = −2

then

λA + µB = A− 2B =

[
4 0
1 7

]
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Inner products

Inner products

for two vectors a and x, with a written as a row vector,

aT =
[
a1 . . . an

]
, x =

 x1
...
xn


the product aTx is called the inner product

it is defined as aTx = a1x1 + . . .+ anxn

usually called the across and down rule

multiply together corresponding elements in aT and x, and add up
the products

result of aTx is a real number

e.g.

cT =
[

6 2
]
, x =

[
6
3

]
, cTx =

[
6 2

] [ 6
3

]
= 36 + 6 = 42
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Inner products

for aTx to be defined, a and x must both be n × 1

so for b =

 1
2
3

 , x =

[
6
3

]
bTx is not defined
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Orthogonality

Orthogonality

if x and y are such that

xTy = 0,

x and y are orthogonal to each
other

e.g. x =

[
1
1

]
, y =

[
−1

1

]
,

xTy = 0

arrows represent the vectors

the vectors are at right angles to
each other
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Matrix vector products

Matrix vector products

write A =

[
6 2
3 5

]
=

[
αT
1

αT
2

]
i.e. through its rows

given x =

[
6
3

]
, two possible inner products,

αT
1 x = 42, αT

2 x = 33

assemble into 2× 1 vector - defines the product Ax

Ax =

[
6 2
3 5

] [
6
3

]
=

[
αT
1 x
αT
2 x

]
=

[
42
33

]
numerically,

[
6 2
3 5

] [
6
3

]
=

[
42
33

]
is an across and down rule

notice that the row dimension of Ax is that of A
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Linear combinations of columns

Linear combinations of columns

another perspective on Ax =

[
6 2
3 5

] [
6
3

]
=

[
42
33

]
Ax = 6

[
6
3

]
+ 3

[
2
5

]
is a linear combination of the columns of A

more generally, if A =
[
a b

]
, x =

[
λ
µ

]
then Ax = λa + µb

even more generally ... an m × n matrix A is a collection of columns,

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

 =
[
a1 a2 . . . an

]
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Linear combinations of columns

If x is an n × 1 vector, by the across and down rule,

Ax =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn




x1
x2
...
xn



Ax =


a11x1 + . . .+ a1nxn
a21x1 + . . .+ a2nxn

...
am1x1 + . . .+ amnxn

 =



n∑
j=1

a1jxj

n∑
j=1

a2jxj

...
n∑

j=1
amjxj


the ith element of Ax is

n∑
j=1

aijxj

Ax is an m × 1 vector
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Linear combinations of columns

as a linear combination of the columns of A, where

A =
[
a1 a2 . . . an

]
, x =


x1
x2
...
xn



Ax = a1x1 + . . .+ anxn =
n∑

j=1
ajxj =



n∑
j=1

a1jxj

n∑
j=1

a2jxj

...
n∑

j=1
amjxj


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Matrix - matrix products

Matrix - matrix products

A =
[
a1 a2 . . . an

]
, m × n, B =

[
b1 b2 . . . br

]
, n × r

each Abi exists and is m × 1

arrange products as columns of matrix C =
[
Ab1 Ab2 . . . Abr

]
define this matrix C as the product AB, an m × r matrix

and create an across and down rule for defining C

B =


b11 b12 . . . b1r
b21 b22 . . . b2r

...
...

. . .
...

bn1 bn2 . . . bnr

 = ‖bik‖ , i = 1, ..., n, k = 1, ..., r

the kth column of C is Abk
typical element of C is obtained as inner product of ith row of A[
ai1 ai2 . . . ain

]
, with the elements of bk

ai1b1k + ai2b2k + . . .+ ainbnk =
n∑

j=1
aijbjk
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Matrix - matrix products

ai1b1k + ai2b2k + . . .+ ainbnk =
n∑

j=1
aijbjk

is the ikth element of C

arises from the across and down argument in

C = AB =

a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

...
ai1 ai2 . . . ain

...
...

...
am1 am2 . . . amn




b11 b12 . . . b1k . . . b1r
b21 b22 . . . b2k . . . b2r

...
...

...
...

bn1 bn2 . . . bnk . . . bnr



in typical element notation, C =

∥∥∥∥∥ n∑
j=1

aijbjk

∥∥∥∥∥
simple ideas, but a lot of detail, numerical examples inevitably tedious

need to do hand calculations to start with

but end up by using computer - Matlab
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Examples

Examples

A =

[
6 2
3 5

]
=
[
x y

]
sum and difference of x and y as matrix vector products are

x + y =

[
6 2
3 5

] [
1
1

]
=

[
8
8

]
x− y =

[
6 2
3 5

] [
1
−1

]
=

[
4
−2

]
set B =

[
1 1
1 −1

]
=
[
b1 b2

]
to contain the linear combination

coefficients

then C = AB =

[
6 2
3 5

] [
1 1
1 −1

]
=

[
8 4
8 −2

]
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Conformable Matrices

Conformable Matrices

if A is m × n, B must be n × r for the product AB to be defined,

so that m × n : n × r produces an m × r matrix

say that A and B are conformable in this case

key point is that if the number of columns of A is not equal to the
number of rows of B, then the inner product calculations required are
not defined
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Overview

Overview

matrix arithmetic viewpoint good to see the ideas working

but the elementwise approach to matrix multiplication is not good for

matrix algebra

the linear combination of columns perspective is much more useful

note the conformability requirement

for AB to be defined,

A must have the same number of columns

as there are rows in B

Matlab is very useful for these matrix calculations - lecture notes give
some examples
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Pre and post multiplication

Pre and post multiplication

If C = AB, B is pre-multiplied by A, and A is post-multiplied by B

suppose that AB and BA are both defined

if A is m × n, B must be n × r to get AB, m × r

to get BA with A m × n, B must be n ×m − i.e. r = m

AB is then m ×m, BA is n × n

but different sized matrices cannot be equal

e.g. B2C =

 6 −3
2 5
−3 1

[ 6 2 −3
3 5 −1

]
=

 27 −3 −15
27 29 −11
−15 −1 8


CB2 =

[
6 2 −3
3 5 −1

] 6 −3
2 5
−3 1

 =

[
49 −11
31 15

]
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Pre and post multiplication

even when m = n so that AB and BA are both m ×m

AB and BA are not necessarily equal

e.g. A =

[
6 2
3 5

]
, B =

[
1 1
1 −1

]
AB =

[
8 4
8 −2

]
, BA =

[
9 7
3 −3

]
in cases where AB = BA, A and B are said to commute
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Transposition

Transposition

convert column vector x to row vector xT by transposition

x =

 x1
...
xn

 , xT =
[
x1 . . . xn

]
transpose xT as

(
xT
)T

to recover x

for an m × n matrix A =
[
a1 . . . an

]
the transpose of A, AT , is

the matrix whose rows are the columns of A transposed

AT =

 aT1
...
aTn

 , n ×m
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Transposition

if the rows of AT are transposed columns of A ...

then, elementwise, A =


a11 a12 . . . a1n

...
...

...
ai1 ai2 . . . ain

...
...

...
am1 am2 . . . amn

 ,

is transposed to AT =


a11 . . . ai1 . . . am1

a12 . . . ai2 . . . am2
...

...
...

a1n . . . ain . . . amn


so (i , j) element of A is the (j , i) element of AT

what about transposing AT ?

write rows as columns so that
(
AT
)T

= A
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Product rule for transposition

Product rule for transposition

... states that if C = AB, then CT = BTAT , example ’proof’ in
lecture notes

to transpose AB, transpose terms from right to left

e.g. A =

[
6 2
3 5

]
, AT =

[
6 3
2 5

]
B =

[
1 1
2 −1

]
, BT =

[
1 2
1 −1

]
C = AB =

[
10 4
13 −2

]
, CT =

[
10 13
4 −2

]
BTAT =

[
1 2
1 −1

] [
6 3
2 5

]
=

[
10 13
4 −2

]
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Coordinate vectors

Coordinate vectors

vectors of the form[
1
0

]
,

[
0
1

]
in 2 dimensions,

 1
0
0

 ,
 0

1
0

 ,
 0

0
1

 in 3

dimensions
1
0
...
0
0

 ,


0
1
0
...
0

 , . . . ,


0
0
...
0
1

 in n dimensions

are called coordinate vectors

characteristic notation, e1, . . . , en, in n dimensions

also a characteristic pattern of elements
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Zero and identity matrices

Zero and identity matrices

the zero matrix has every element equal to zero: 0 = ‖0‖
but what is the dimension? if m × n, can write 0mn - but usually
omitted

effects: turns any matrix into the zero matrix, 0A = 0, B0 = 0

identity or unit matrix is formed from coordinate vectors

2 dimensions:
[
e1 e2

]
=

[
1 0
0 1

]
= I2

3 dimensions:
[
e1 e2 e3

]
=

 1 0 0
0 1 0
0 0 1

 = I3
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Zero and identity matrices

n dimensions:
[
e1 e2 . . . en

]
=


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 = In

characteristic pattern of 1′s on the diagonal, zeros elsewhere

effects? use A =

[
6 2
3 5

]
I2A =

[
1 0
0 1

] [
6 2
3 5

]
=

[
6 2
3 5

]
= A

AI2 =

[
6 2
3 5

] [
1 0
0 1

]
=

[
6 2
3 5

]
= A

any matrix is left unchanged by pre or post multiplication by a
suitable In

hence the name identity matrix, always a square matrix
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Diagonal matrices

Diagonal matrices

diagonal matrix: every element zero except on the diagonal

usually square, e.g. D =

 1 0 0
0 2 0
0 0 3


characteristic effects ... A =

[
6 2
3 5

]
, B =

[
2 0
0 −2

]
AB =

[
6 2
3 5

] [
2 0
0 −2

]
=

[
12 −4
6 −10

]
BA =

[
2 0
0 −2

] [
6 2
3 5

]
=

[
12 4
−6 −10

]
post multiplication multiplies each column of A by the corresponding
diagonal element

pre multiplication multiplies each row by the corresponding diagonal
element
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Symmetric matrices

Symmetric matrices

A is symmetric if A = AT , so a symmetric matrix must be square

e.g. A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 , AT =

 a11 a21 a31
a12 a22 a32
a13 a23 a33


equality of matrices is equality of all elements - ok on the diagonal

for the off diagonal elements, must have

a12 = a21, a13 = a31, a23 = a32

more generally, aij = aji for i 6= j

for a symmetric matrix, the triangle of above diagonal elements
coincides with the triangle of below diagonal elements

e.g. A =

[
1 2
2 1

]
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A common symmetric matrix

A common symmetric matrix

e.g C =

[
6 2 −3
3 5 −1

]
, compute CTC

CTC =

 6 3
2 5
−3 −1

[ 6 2 −3
3 5 −1

]
=

 45 27 −21
27 29 −11
−21 −11 10


general result here: if A is m × n, then ATA is symmetric, n × n

proof using product rule for transposition(
ATA

)T
= AT

(
AT
)T

= ATA

such symmetric matrices appear a lot in econometrics

can see that all diagonal matrices are symmetric
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The outer product

The outer product

x, y, n × 1, inner product xTy is 1× 1, a scalar

what about the product xxT ? n × 1 : 1× n should give n × n?

i.e. an n × n matrix

what does the across and down rule say?

e.g. xxT =

[
6
3

] [
6 3

]
xxT =

[
36 18
18 9

]
, a symmetric matrix
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The outer product

if x is n × 1 and y is m × 1, xyT is n ×m

xyT =

 x1
...
xn

 [ y1 . . . ym
]

=


x1y1 x1y2 . . . x1ym
x2y1 x2y2 . . . x2ym

...
xny1 xny2 . . . xnym


examples with 1, a vector with every element 1, are interesting

1 is often called the sum vector

1T2 x =
[

1 1
] [ 6

3

]
= 9, the sum of the elements of x

easy to turn into sample mean of elements of x

... divide by number of elements in x
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The outer product

outer products with 1...

12xT =

[
1
1

] [
6 3

]
=

[
6 3
6 3

]
x1T2 =

[
6
3

] [
1 1

]
=

[
6 6
3 3

]
so premultiplication by 1 repeats xT as rows of product

postmultiplication by 1 repeats x as columns of product

notice that 1n1Tn =

 1 . . . 1
...

1 . . . 1

 - useful in econometrics
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Triangular matrices

Triangular matrices

A =

 a11 0 0
a21 a22 0
a31 a32 a33

 is a lower triangular matrix because all

elements above the diagonal are zero

lower triangular matrices are usually square, but rectangular versions
permitted

AT is an upper triangular matrix, with all elements below the
diagonal zero

unit triangular matrices have diagonal elements all equal to 1

e.g. A =

 1 2 0
0 1 1
0 0 1


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Partitioned matrices

Partitioned matrices

can be helpful organise blocks of elements of a matrix into matrices

e.g.

B =


1 2 0 0
8 3 0 0
0 0 7 4
0 0 6 5

 =

[
B11 0

0 B22

]

where the blocks are 2× 2 matrices

B is a partitioned matrix
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More examples

More examples

A, m × n with A =

[
A11 A12 A23

A21 A22 A23

]
a partition of A into r rows and m − r rows,

3 columns, 4 columns and n − 7 columns

A11 : r × 3, A12 : r × 4, A13 : r × (n − 7)

A21 : (m − r)× 3, A22 : (m − r)× 4, A23 : (m − r)× (n − 7)

another example: A =
[
A1 A2 A3

]
, x =

 x1
x2
x3


A is m × (n1 : n2 : n3)

for Ax to exist, x1 must be n1 × 1, x2 n2 × 1 and x3 n3 × 1

then A1x1, A2x2 and A3x3 are all m × 1
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More examples

if A is m × n and x n × 1, typical element of Ax is
n∑

j=1
aijxj

by the across and down rule, break up summation into three
components

the part from the first n1 columns of A,
n1∑
j=1

aijxj , corresponds to A1x1

the part from the next n2 columns of A,
n1+n2∑
j=n1+1

aijxj , corresponds to

A2x2

the part from the last n3 columns of A,
n∑

j=n1+n2+1
aijxj , corresponds

to A3x3

clear that Ax = A1x1 + A2x2 + A3x3

a natural generalisation of the across and down rule

but each component product has to be conformable
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More examples

another example with A =

[
A11 A12 A13

A21 A22 A23

]
and B =

 B11

B21

B31


A submatrix dimensions[

r × 3 r × 4 r × (n − 7)
(m − r)× 3 (m − r)× 4 (m − r)× (n − 7)

]

AB =

[
A11 A12 A13

A21 A22 A23

] B11

B21

B31


AB =

[
A11B11 + A12B21 + A13B31

A21B11 + A22B21 + A23B31

]
what must the dimensions of the submatrices in B be for this to be
defined?

B11,B21,B31 must have the same number of columns

B11 must have 3 rows, B21 4 rows and B31 n − 7 rows
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Matrices, vectors and econometrics

Matrices, vectors and econometrics

regress weight on height: yi = α + βxi + ui ,

think of D as D =
[
y x

]
say,

define 112 =

 1
...
1

 , u =

 u1
...

u12


u a 12× 1 vector of error terms

regression model is y = 112α + xβ + u

combine components:

X =
[
112 x

]
, δ =

[
α
β

]
data matrix representation is y = Xδ + u

D =



155 70
150 63
180 72
135 60
156 66
168 70
178 74
160 65
132 62
145 67
139 65
152 68


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