

The University of Manchester

ECON61001 Econometric Methods Lecture 2

Len Gill

Arthur Lewis 3.060

2013-2014

Matrices - revision

- matrices were mentioned in PreSession Maths:
- A matrix is a rectangular array of numbers enclosed in parentheses,
- conventionally denoted by a capital letter.
- the number of rows (say m) and the number of columns (say n) determine the order of the matrix $(m \times n)$.

• examples:

•
$$P = \begin{bmatrix} 2 & 3 & 4 \\ 3 & 1 & 5 \end{bmatrix}, \quad Q = \begin{bmatrix} 2 & 3 \\ 4 & 3 \\ 1 & 5 \end{bmatrix}$$

• 2×3 and 3×2 respectively

Matrices and Econometrics

۲	data	sets	are	matrices	

- here observations on
- weights and heights of 12 students

Γ	155	70	1
	150	63	
	180	72	
	135	60	
	156	66	
	168	70	
	178	74	
	160	65	
	132	62	
	145	67	
	139	65	
	152	68	

D =

Matrix Arithmetic and Matrix Algebra

- calculations using matrices with numerical elements is *matrix arithmetic*
- calculations using matrices with symbolic elements is matrix algebra

• e.g with
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$
 or $A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$

- general 2 \times 3 and $m \times n$ matrices
- really want to use the algebra of matrices
- that is algebra with objects that are matrices
- rather than algebra with the elements of matrices
- start with matrix arithmetic
- and build up to the two versions of matrix algebra

Typical element notation for matrices

• for
$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}, \quad m \times n$$

• write
$$A = ||a_{ij}||$$
, $i = 1, ..., m, j = 1, ..., n$

- a_{ij} is the element in (at the intersection of) the *i*th row and *j*th column, e.g. a_{12}
- when $m \neq n$, A is a *rectangular* matrix
- when m = n, A is $m \times m$ or $n \times n$, and A is a square matrix
- so a square matrix has the same number of rows and columns

Rows, columns and vectors

• if A is
$$m \times n$$
, $m = 1$ or $n = 1$ or both is allowed

• if n = 1, say that A is an $m \times 1$ column vector

•
$$A = \begin{bmatrix} a_{11} \\ \vdots \\ a_{m1} \end{bmatrix}$$

• if
$$m = 1, A$$
 is a $1 \times n$ row vector

•
$$A = \begin{bmatrix} a_{11} & \ldots & a_{1n} \end{bmatrix}$$

• usual to use bold lower case for vectors

• e.g.
$$\mathbf{x} = \begin{bmatrix} 6 \\ 3 \end{bmatrix}$$
, $\mathbf{a} = \begin{bmatrix} a_{11} \\ \vdots \\ a_{m1} \end{bmatrix}$

• if $m = 1 = n, A = [a_{11}] = a_{11}$ - both a 1×1 matrix and a real number

Matrices as collections of vectors

• think of
$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$
 as a collection of columns
• each column is a column vector (or just a vector)
• e.g. $\mathbf{a} = \begin{bmatrix} 6 \\ 3 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$, 2×1 vectors
• define $A = \begin{bmatrix} \mathbf{a} & \mathbf{b} \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 3 & 5 \end{bmatrix}$, $\mathbf{a} 2 \times 2$ matrix

Transposition of vectors

• rows of
$$A = \begin{bmatrix} 6 & 2 \\ 3 & 5 \end{bmatrix}$$
 are vectors
• $\mathbf{c} = \begin{bmatrix} 6 \\ 2 \end{bmatrix}$, $\mathbf{d} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$... but these are column vectors, not rows

• convert a column vector \mathbf{c} into a row vector by transposition

• the transposed **c** is
$$\mathbf{c}^{\mathcal{T}} = \left[egin{array}{c} 6 & 2 \end{array}
ight]$$

- here ^T denotes transposition
- \bullet sometimes write \mathbf{c}' i.e. use a prime, but easier to lose track of ' in calculations
- stick to the T sign!

• write A in terms of its rows as
$$A = \begin{bmatrix} \mathbf{c}^T \\ \mathbf{d}^T \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 3 & 5 \end{bmatrix}$$

• note that the transpose of \mathbf{c}^{T} is $\mathbf{c} : (\mathbf{c}^{T})^{T} = \mathbf{c}$

Operations with vectors

• set
$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
, $\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$, $n \times 1$ (column) vectors

• addition and subtraction defined only for vectors of the same dimensions

•
$$\mathbf{x} + \mathbf{y} = \begin{bmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{bmatrix}$$
, $\mathbf{x} - \mathbf{y} = \begin{bmatrix} x_1 - y_1 \\ \vdots \\ x_n - y_n \end{bmatrix}$

- these operations are *elementwise*
- if **x** and **y** had different dimensions, there would be some elements left over from the larger dimension vector

Scalar multiplication

-

-

• for
$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

• if λ is a real number or *scalar*, the product $\lambda \mathbf{x}$ is defined as
• $\lambda \mathbf{x} = \begin{bmatrix} \lambda x_1 \\ \vdots \\ \lambda x_n \end{bmatrix}$

• every element of **x** is multiplied by λ to give λ **x**

Linear combinations of vectors

• addition of vectors and scalar multiplication can be combined to give

• a linear combination of
$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
, $\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$,
• as $\lambda \mathbf{x} + \mu \mathbf{y} = \begin{bmatrix} \lambda x_1 \\ \vdots \\ \lambda x_n \end{bmatrix} + \begin{bmatrix} \mu y_1 \\ \vdots \\ \mu y_n \end{bmatrix} = \begin{bmatrix} \lambda x_1 + \mu y_1 \\ \vdots \\ \lambda x_n + \mu y_n \end{bmatrix}$

- more generally
- the linear combination of vectors $\mathbf{x}, \mathbf{y}, \dots, \mathbf{z}$ by scalars λ, μ, \dots, ν is
- $\lambda \mathbf{x} + \mu \mathbf{y} + \ldots + \nu \mathbf{z}$
- with typical element $\lambda x_i + \mu y_i + \ldots + \nu z_i$
- $\mathbf{x}, \mathbf{y}, \dots, \mathbf{z}$ must have a common dimension

Linear combinations of matrices

- carry over to matrices apply to each column of a matrix
- for $A = \begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_n \end{bmatrix}$, $B = \begin{bmatrix} \mathbf{b}_1 & \dots & \mathbf{b}_n \end{bmatrix}$, both $m \times n$
- $A + B = [\mathbf{a}_1 + \mathbf{b}_1 \dots \mathbf{a}_n + \mathbf{b}_n] = ||\mathbf{a}_{ij} + \mathbf{b}_{ij}||$
- $A-B = \begin{bmatrix} \mathbf{a}_1 \mathbf{b}_1 & \dots & \mathbf{a}_n \mathbf{b}_n \end{bmatrix} = \|\mathbf{a}_{ij} \mathbf{b}_{ij}\|$
- so addition/subtraction is really elementwise
- scalar multiplication of A by λ is also elementwise
- $\lambda A = \begin{bmatrix} \lambda \mathbf{a}_1 & \dots & \lambda \mathbf{a}_n \end{bmatrix} = \|\lambda \mathbf{a}_{ij}\|$
- the linear combination of A and B by λ and μ is
- $\lambda A + \mu B = \begin{bmatrix} \lambda \mathbf{a}_1 + \mu \mathbf{b}_1 & \dots & \lambda \mathbf{a}_n + \mu \mathbf{b}_n \end{bmatrix} = \|\lambda \mathbf{a}_{ij} + \mu \mathbf{b}_{ij}\|$

Exampl

Example

•
$$A = \begin{bmatrix} 6 & 2 \\ 3 & 5 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$
• $\lambda = 1, \ \mu = -2$
• then
• $\lambda A + \mu B = A - 2B = \begin{bmatrix} 4 & 0 \\ 1 & 7 \end{bmatrix}$

Inner products

• for two vectors **a** and **x**, with **a** written as a row vector,

•
$$\mathbf{a}^T = \begin{bmatrix} a_1 & \dots & a_n \end{bmatrix}, \mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

- the product $\mathbf{a}^T \mathbf{x}$ is called the *inner product*
- it is defined as $\mathbf{a}^T \mathbf{x} = a_1 x_1 + \ldots + a_n x_n$
- usually called the across and down rule
- multiply together corresponding elements in $\mathbf{a}^{\mathcal{T}}$ and $\mathbf{x},$ and add up the products
- result of a^Tx is a real number

c.
c^T =
$$\begin{bmatrix} 6 & 2 \end{bmatrix}$$
, **x** = $\begin{bmatrix} 6 \\ 3 \end{bmatrix}$, **c**^T**x** = $\begin{bmatrix} 6 & 2 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \end{bmatrix}$ = 36 + 6 = 42

• for
$$\mathbf{a}^T \mathbf{x}$$
 to be defined, \mathbf{a} and \mathbf{x} must both be $n \times 1$
• so for $\mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} 6 \\ 3 \end{bmatrix}$
• $\mathbf{b}^T \mathbf{x}$ is not defined

Orthogonality

- $\bullet\,$ if x and y are such that
- $\mathbf{x}^T \mathbf{y} = \mathbf{0}$,
- **x** and **y** are orthogonal to each other

• e.g.
$$\mathbf{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, $\mathbf{y} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$,
 $\mathbf{x}^T \mathbf{y} = 0$

- arrows represent the vectors
- the vectors are at right angles to each other

Matrix vector products

• write
$$A = \begin{bmatrix} 6 & 2 \\ 3 & 5 \end{bmatrix} = \begin{bmatrix} \alpha_1^T \\ \alpha_2^T \end{bmatrix}$$
 i.e. through its rows
• given $\mathbf{x} = \begin{bmatrix} 6 \\ 3 \end{bmatrix}$, two possible inner products,
• $\alpha_1^T \mathbf{x} = 42$, $\alpha_2^T \mathbf{x} = 33$
• assemble into 2×1 vector - defines the product $A\mathbf{x}$
• $A\mathbf{x} = \begin{bmatrix} 6 & 2 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \end{bmatrix} = \begin{bmatrix} \alpha_1^T \mathbf{x} \\ \alpha_2^T \mathbf{x} \end{bmatrix} = \begin{bmatrix} 42 \\ 33 \end{bmatrix}$
• numerically, $\begin{bmatrix} 6 & 2 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \end{bmatrix} = \begin{bmatrix} 42 \\ 33 \end{bmatrix}$

- is an across and down rule
- notice that the row dimension of Ax is that of A

Linear combinations of columns

• another perspective on
$$A\mathbf{x} = \begin{bmatrix} 6 & 2 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \end{bmatrix} = \begin{bmatrix} 42 \\ 33 \end{bmatrix}$$

• $A\mathbf{x} = 6\begin{bmatrix} 6\\3 \end{bmatrix} + 3\begin{bmatrix} 2\\5 \end{bmatrix}$ is a linear combination of the columns of A

• more generally, if
$$A = \begin{bmatrix} \mathbf{a} & \mathbf{b} \end{bmatrix}$$
, $\mathbf{x} = \begin{bmatrix} \lambda \\ \mu \end{bmatrix}$

• then $A\mathbf{x} = \lambda \mathbf{a} + \mu \mathbf{b}$

• even more generally ... an $m \times n$ matrix A is a collection of columns,

•
$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \end{bmatrix}$$

• If **x** is an $n \times 1$ vector, by the *across and down* rule,

•
$$A\mathbf{x} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

• $A\mathbf{x} = \begin{bmatrix} a_{11}x_1 + \dots + a_{1n}x_n \\ a_{21}x_1 + \dots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n \end{bmatrix} = \begin{bmatrix} \sum_{j=1}^n a_{1j}x_j \\ \sum_{j=1}^n a_{2j}x_j \\ \vdots \\ \sum_{j=1}^n a_{mj}x_j \end{bmatrix}$

• the *i*th element of
$$A\mathbf{x}$$
 is $\sum_{j=1}^{n} a_{ij} x_j$

• $A\mathbf{x}$ is an $m \times 1$ vector

• as a linear combination of the columns of A, where

•
$$A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \end{bmatrix}, \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

• $A\mathbf{x} = \mathbf{a}_1 x_1 + \dots + \mathbf{a}_n x_n = \sum_{j=1}^n \mathbf{a}_j x_j = \begin{bmatrix} \sum_{j=1}^n a_{1j} x_j \\ \sum_{j=1}^n a_{2j} x_j \\ \vdots \\ \sum_{j=1}^n a_{mj} x_j \end{bmatrix}$

Matrix - matrix products

•
$$A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \end{bmatrix}, m \times n, B = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \dots & \mathbf{b}_r \end{bmatrix}, n \times r$$

- each $A\mathbf{b}_i$ exists and is m imes 1
- arrange products as columns of matrix $C = |A\mathbf{b}_1 A\mathbf{b}_2 \dots A\mathbf{b}_r|$
- define this matrix C as the product AB, an $m \times r$ matrix
- and create an across and down rule for defining C

•
$$B = \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1r} \\ b_{21} & b_{22} & \dots & b_{2r} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nr} \end{bmatrix} = \|b_{ik}\|, \quad i = 1, ..., n, k = 1, ..., r$$

• the kth column of C is Ab.

the kth column of C is $A\mathbf{D}_k$

• typical element of C is obtained as inner product of *i*th row of A • $\begin{bmatrix} a_{i1} & a_{i2} & \dots & a_{in} \end{bmatrix}$, with the elements of **b**_k

•
$$a_{i1}b_{1k} + a_{i2}b_{2k} + \ldots + a_{in}b_{nk} = \sum_{j=1}^{n} a_{ij}b_{jk}$$

- $a_{i1}b_{1k} + a_{i2}b_{2k} + \ldots + a_{in}b_{nk} = \sum_{j=1}^{n} a_{ij}b_{jk}$
- is the *ik*th element of C
- arises from the across and down argument in

•
$$C = AB =$$

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1k} & \dots & b_{1r} \\ b_{21} & b_{22} & \dots & b_{2k} & \dots & b_{2r} \\ \vdots & \vdots & & \vdots & & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nk} & \dots & b_{nr} \end{bmatrix}$$

- in typical element notation, $C = \left\| \sum_{i=1}^{n} a_{ij} b_{jk} \right\|$
- simple ideas, but a lot of detail, numerical examples inevitably tedious
- need to do hand calculations to start with
- but end up by using computer Matlab

Len Gill (Arthur Lewis 3.060)

Example

Examples

•
$$A = \begin{bmatrix} 6 & 2 \\ 3 & 5 \end{bmatrix} = \begin{bmatrix} \mathbf{x} & \mathbf{y} \end{bmatrix}$$

• sum and difference of \mathbf{x} and \mathbf{y} as matrix vector products are
• $\mathbf{x} + \mathbf{y} = \begin{bmatrix} 6 & 2 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 8 \\ 8 \end{bmatrix}$
• $\mathbf{x} - \mathbf{y} = \begin{bmatrix} 6 & 2 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 4 \\ -2 \end{bmatrix}$
• set $B = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 \end{bmatrix}$ to contain the linear combination coefficients
• then $C = AB = \begin{bmatrix} 6 & 2 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 8 & 4 \\ 8 & -2 \end{bmatrix}$

Conformable Matrices

- if A is $m \times n$, B must be $n \times r$ for the product AB to be defined,
- so that $m \times n : n \times r$ produces an $m \times r$ matrix
- say that A and B are conformable in this case
- key point is that if the number of columns of A is not equal to the number of rows of B, then the inner product calculations required are not defined

Overview

- matrix arithmetic viewpoint good to see the ideas working
- but the elementwise approach to matrix multiplication is not good for
- matrix algebra
- the linear combination of columns perspective is much more useful
- note the conformability requirement
- for AB to be defined,
- A must have the same number of columns
- as there are rows in B
- Matlab is very useful for these matrix calculations lecture notes give some examples

Pre and post multiplication

- If C = AB, B is pre-multiplied by A, and A is post-multiplied by B
- suppose that AB and BA are both defined
- if A is $m \times n$, B must be $n \times r$ to get AB, $m \times r$
- to get *BA* with $A \ m \times n$, *B* must be $n \times m i.e.$ r = m
- AB is then $m \times m$, BA is $n \times n$
- but different sized matrices cannot be equal

• e.g.
$$B_2C = \begin{bmatrix} 6 & -3 \\ 2 & 5 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 6 & 2 & -3 \\ 3 & 5 & -1 \end{bmatrix} = \begin{bmatrix} 27 & -3 & -15 \\ 27 & 29 & -11 \\ -15 & -1 & 8 \end{bmatrix}$$

• $CB_2 = \begin{bmatrix} 6 & 2 & -3 \\ 3 & 5 & -1 \end{bmatrix} \begin{bmatrix} 6 & -3 \\ 2 & 5 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} 49 & -11 \\ 31 & 15 \end{bmatrix}$

- even when m = n so that AB and BA are both $m \times m$
- AB and BA are not necessarily equal

• e.g.
$$A = \begin{bmatrix} 6 & 2 \\ 3 & 5 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$
• $AB = \begin{bmatrix} 8 & 4 \\ 8 & -2 \end{bmatrix}$, $BA = \begin{bmatrix} 9 & 7 \\ 3 & -3 \end{bmatrix}$

• in cases where AB = BA, A and B are said to commute

Transposition

• convert column vector \mathbf{x} to row vector \mathbf{x}^{T} by transposition

•
$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \quad \mathbf{x}^T = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}$$

• transpose \mathbf{x}^T as $(\mathbf{x}^T)^T$ to recover \mathbf{x}

• for an $m \times n$ matrix $A = \begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_n \end{bmatrix}$ the transpose of A, A^T , is the matrix whose rows are the columns of A transposed

•
$$A^T = \begin{bmatrix} \mathbf{a}_1^T \\ \vdots \\ \mathbf{a}_n^T \end{bmatrix}, n \times m$$

- if the rows of A^T are transposed columns of A ... • then, elementwise, $A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$ • is transposed to $A^T = \begin{bmatrix} a_{m1} & a_{m2} & \cdots & a_{m1} \\ a_{11} & \cdots & a_{i1} & \cdots & a_{m1} \\ a_{12} & \cdots & a_{i2} & \cdots & a_{m2} \\ \vdots & & \vdots & & \vdots \\ a_{1n} & \cdots & a_{in} & \cdots & a_{mn} \end{bmatrix}$ • so (i, j) element of A is the (j, i) element of A^T
 - what about transposing A^T ?
 - write rows as columns so that $(A^T)^T = A$

Product rule for transposition

- ... states that if C = AB, then $C^T = B^T A^T$, example 'proof' in lecture notes
- to transpose AB, transpose terms from right to left

• e.g.
$$A = \begin{bmatrix} 6 & 2 \\ 3 & 5 \end{bmatrix}, A^{T} = \begin{bmatrix} 6 & 3 \\ 2 & 5 \end{bmatrix}$$

• $B = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}, B^{T} = \begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix}$
• $C = AB = \begin{bmatrix} 10 & 4 \\ 13 & -2 \end{bmatrix}, C^{T} = \begin{bmatrix} 10 & 13 \\ 4 & -2 \end{bmatrix}$
• $B^{T}A^{T} = \begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 6 & 3 \\ 2 & 5 \end{bmatrix} = \begin{bmatrix} 10 & 13 \\ 4 & -2 \end{bmatrix}$

Coordinate vectors

- vectors of the form • $\begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix}$ in 2 dimensions, $\begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix}$ in 3 dimensions
 - are called coordinate vectors
 - characteristic notation, $\mathbf{e}_1, \ldots, \mathbf{e}_n$, in *n* dimensions
 - also a characteristic pattern of elements

Zero and identity matrices

- the zero matrix has every element equal to zero: $0 = \|0\|$
- but what is the dimension? if $m \times n$, can write 0_{mn} but usually omitted
- effects: turns any matrix into the zero matrix, 0A = 0, B0 = 0
- identity or unit matrix is formed from coordinate vectors

• 2 dimensions:
$$\begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_2$$

• 3 dimensions: $\begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I_3$

• n dimensions:
$$\begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \dots & \mathbf{e}_n \end{bmatrix} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix} = I_n$$

- characteristic pattern of 1's on the diagonal, zeros elsewhere
- effects? use $A = \begin{bmatrix} 6 & 2 \\ 3 & 5 \end{bmatrix}$ • $I_2 A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 6 & 2 \\ 3 & 5 \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 3 & 5 \end{bmatrix} = A$ • $AI_2 = \begin{bmatrix} 6 & 2 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 3 & 5 \end{bmatrix} = A$
- any matrix is left unchanged by pre or post multiplication by a suitable I_n
- hence the name identity matrix, always a square matrix

Diagonal matrices

- diagonal matrix: every element zero except on the diagonal
- usually square, e.g. $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ • characteristic effects ... $A = \begin{bmatrix} 6 & 2 \\ 3 & 5 \end{bmatrix}, B = \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}$ • $AB = \begin{bmatrix} 6 & 2 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix} = \begin{bmatrix} 12 & -4 \\ 6 & -10 \end{bmatrix}$ • $BA = \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 6 & 2 \\ 3 & 5 \end{bmatrix} = \begin{bmatrix} 12 & 4 \\ -6 & -10 \end{bmatrix}$
- post multiplication multiplies each column of A by the corresponding diagonal element
- pre multiplication multiplies each row by the corresponding diagonal element

Symmetric matrices

- A is symmetric if $A = A^T$, so a symmetric matrix must be square
- e.g. $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}, A^{T} = \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{bmatrix}$
- equality of matrices is equality of all elements ok on the diagonal
- for the off diagonal elements, must have
- $a_{12} = a_{21}$, $a_{13} = a_{31}$, $a_{23} = a_{32}$
- more generally, $a_{ij} = a_{ji}$ for $i \neq j$
- for a symmetric matrix, the triangle of above diagonal elements coincides with the triangle of below diagonal elements

• e.g.
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$

A common symmetric matrix

• e.g
$$C = \begin{bmatrix} 6 & 2 & -3 \\ 3 & 5 & -1 \end{bmatrix}$$
, compute $C^{T}C$
• $C^{T}C = \begin{bmatrix} 6 & 3 \\ 2 & 5 \\ -3 & -1 \end{bmatrix} \begin{bmatrix} 6 & 2 & -3 \\ 3 & 5 & -1 \end{bmatrix} = \begin{bmatrix} 45 & 27 & -21 \\ 27 & 29 & -11 \\ -21 & -11 & 10 \end{bmatrix}$

• general result here: if A is $m \times n$, then $A^T A$ is symmetric, $n \times n$

• proof using product rule for transposition

•
$$(A^T A)^T = A^T (A^T)^T = A^T A$$

- such symmetric matrices appear a lot in econometrics
- can see that all diagonal matrices are symmetric

The outer product

- **x**, **y**, $n \times 1$, inner product $\mathbf{x}^T \mathbf{y}$ is 1×1 , a scalar
- what about the product $\mathbf{x}\mathbf{x}^T$? $n \times 1 : 1 \times n$ should give $n \times n$?
- i.e. an $n \times n$ matrix
- what does the across and down rule say?

• e.g.
$$\mathbf{x}\mathbf{x}^{T} = \begin{bmatrix} 6\\ 3 \end{bmatrix} \begin{bmatrix} 6 & 3 \end{bmatrix}$$

• $\mathbf{x}\mathbf{x}^{T} = \begin{bmatrix} 36 & 18\\ 18 & 9 \end{bmatrix}$, a symmetric matrix

• if **x** is $n \times 1$ and **y** is $m \times 1$, \mathbf{xy}^T is $n \times m$

•
$$\mathbf{x}\mathbf{y}^{\mathsf{T}} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \begin{bmatrix} y_1 & \dots & y_m \end{bmatrix} = \begin{bmatrix} x_1y_1 & x_1y_2 & \dots & x_1y_m \\ x_2y_1 & x_2y_2 & \dots & x_2y_m \\ & & \vdots \\ x_ny_1 & x_ny_2 & \dots & x_ny_m \end{bmatrix}$$

examples with 1, a vector with every element 1, are interesting

• 1 is often called the sum vector

•
$$\mathbf{1}_{2}^{T}\mathbf{x} = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \end{bmatrix} = 9$$
, the sum of the elements of \mathbf{x}

easy to turn into sample mean of elements of x

... divide by number of elements in x

• outer products with 1...

•
$$\mathbf{1}_{2}\mathbf{x}^{T} = \begin{bmatrix} 1\\1 \end{bmatrix} \begin{bmatrix} 6 & 3 \end{bmatrix} = \begin{bmatrix} 6 & 3\\6 & 3 \end{bmatrix}$$

• $\mathbf{x}\mathbf{1}_{2}^{T} = \begin{bmatrix} 6\\3 \end{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} 6 & 6\\3 & 3 \end{bmatrix}$

 \bullet so premultiplication by 1 repeats $x^{\mathcal{T}}$ as rows of product

 \bullet postmultiplication by 1 repeats x as columns of product

• notice that
$$\mathbf{1}_n \mathbf{1}_n^T = \begin{bmatrix} 1 & \dots & 1 \\ & \vdots \\ 1 & \dots & 1 \end{bmatrix}$$
 - useful in econometrics

Triangular matrices

• $A = \begin{bmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$ is a lower triangular matrix because all elements above the diagonal are zero

- lower triangular matrices are usually square, but rectangular versions permitted
- A^T is an upper triangular matrix, with all elements below the diagonal zero
- unit triangular matrices have diagonal elements all equal to 1

• e.g.
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Partitioned matrices

can be helpful organise blocks of elements of a matrix into matrices

e.g.

$$B = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 8 & 3 & 0 & 0 \\ 0 & 0 & 7 & 4 \\ 0 & 0 & 6 & 5 \end{bmatrix} = \begin{bmatrix} B_{11} & 0 \\ 0 & B_{22} \end{bmatrix}$$

- where the blocks are 2×2 matrices
- B is a partitioned matrix

More examples

•
$$A, m \times n$$
 with $A = \begin{bmatrix} A_{11} & A_{12} & A_{23} \\ A_{21} & A_{22} & A_{23} \end{bmatrix}$

- a partition of A into r rows and m r rows,
- 3 columns, 4 columns and n-7 columns
- $A_{11}: r \times 3, A_{12}: r \times 4, A_{13}: r \times (n-7)$
- $A_{21}: (m-r) \times 3, A_{22}: (m-r) \times 4, A_{23}: (m-r) \times (n-7)$
- another example: $A = \begin{bmatrix} A_1 & A_2 & A_3 \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{bmatrix}$
- A is $m \times (n_1 : n_2 : n_3)$
- for $A\mathbf{x}$ to exist, \mathbf{x}_1 must be $n_1 \times 1$, \mathbf{x}_2 $n_2 \times 1$ and \mathbf{x}_3 $n_3 \times 1$
- then $A_1\mathbf{x}_1$, $A_2\mathbf{x}_2$ and $A_3\mathbf{x}_3$ are all $m \times 1$

- if A is $m \times n$ and **x** $n \times 1$, typical element of A**x** is $\sum_{j=1}^{n} a_{ij}x_j$
- by the across and down rule, break up summation into three components
- the part from the first n_1 columns of A, $\sum_{j=1}^{n_1} a_{ij}x_j$, corresponds to $A_1\mathbf{x}_1$
- the part from the next n_2 columns of A, $\sum_{j=n_1+1}^{n_1+n_2} a_{ij}x_j$, corresponds to $A_2\mathbf{x}_2$
- the part from the last n_3 columns of A, $\sum_{j=n_1+n_2+1}^n a_{ij}x_j$, corresponds to $A_3\mathbf{x}_3$
- clear that $A\mathbf{x} = A_1\mathbf{x}_1 + A_2\mathbf{x}_2 + A_3\mathbf{x}_3$
- a natural generalisation of the across and down rule
- but each component product has to be conformable

• another example with
$$A = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \end{bmatrix}$$
 and $B = \begin{bmatrix} B_{11} \\ B_{21} \\ B_{31} \end{bmatrix}$

• A submatrix dimensions

•
$$\begin{bmatrix} r \times 3 & r \times 4 & r \times (n-7) \\ (m-r) \times 3 & (m-r) \times 4 & (m-r) \times (n-7) \end{bmatrix}$$

•
$$AB = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \end{bmatrix} \begin{bmatrix} B_{11} \\ B_{21} \\ B_{31} \end{bmatrix}$$

•
$$AB = \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} + A_{13}B_{31} \\ A_{21}B_{11} + A_{22}B_{21} + A_{23}B_{31} \end{bmatrix}$$

- what must the dimensions of the submatrices in *B* be for this to be defined?
- B_{11}, B_{21}, B_{31} must have the same number of columns
- B_{11} must have 3 rows, B_{21} 4 rows and B_{31} n-7 rows

Matrices, vectors and econometrics

• regress weight on height: $y_i = \alpha + \beta x_i + u_i$,	155	70]					
• think of D as $D = \begin{bmatrix} \mathbf{y} & \mathbf{x} \end{bmatrix}$ say,	150	63					
	180	72					
	135	60					
• define $1_{12} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$, $\mathbf{u} = \begin{bmatrix} u_1 \\ \vdots \\ u_{12} \end{bmatrix}$		66					
$\begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} u_{12} \end{bmatrix}$	168 178	70					
• u a 12×1 vector of error terms	178	74					
• regression model is $\mathbf{y} = 1_{12}\alpha + \mathbf{x}\beta + \mathbf{u}$	160	65					
• combine components:	132	62					
	145	67					
$X = \begin{bmatrix} 1_{12} & \mathbf{x} \end{bmatrix}, \ \boldsymbol{\delta} = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$	139 152	65					
L, J	152	68					
• data matrix representation is $\mathbf{y} = X\delta + \mathbf{u}$							