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1 Matrices

In the PreSession Maths course, a matrix was defined as follows:
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ECON61001 Lecture 2

A matrix is a rectangular array of numbers enclosed in parentheses, con-

ventionally denoted by a capital letter. The number of rows (say m) and

the number of columns (say n) determine the order of the matrix (m × n).

Two examples were given:

P =

[
2 3 4
3 1 5

]
, Q =

 2 3
4 3
1 5

 ,

matrices of dimensions 2× 3 and 3× 2 respectively.
Why study matrices for econometrics? Basically because a data set of several vari-

ables, e.g. on the weights and heights of 12 students, can be thought of as a matrix:

D =



155 70
150 63
180 72
135 60
156 66
168 70
178 74
160 65
132 62
145 67
139 65
152 68


The properties of matrices can then be used to facilitate answering all the usual ques-
tions of econometrics - list not given here!

Calculations with matrices with explicit numerical elements, as in the examples
above is called matrix arithmetic. Matrix algebra is the algebra of matrices where the
elements are not made explicit: this is what is really required for econometrics, as we
shall see.

As an example of this, a 2× 3 matrix might be written as

A =

[
a11 a12 a13
a21 a22 a23

]
,

and would equal P above if the collection of aij were given appropriate numerical
values.

A general m× n matrix A can be written as

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
... . . . ...

am1 am2 . . . amn

 .

There is also a typical element notation for matrices:

A =
∥∥aij

∥∥ , i = 1, ..., m, j = 1, ..., n,

so that aij is the element at the intersection of the ith row and jth column in A.
When m 6= n, A is a rectangular matrix; when m = n, A is m×m or n× n, and A is a

square matrix, having the same number of rows or columns.
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1.1 Rows, columns and vectors

Clearly, there is no reason why m or n cannot equal 1: so, an m× n matrix with n = 1,
i.e. with one column, is usually called a column vector. Similarly, a matrix with one
row is a row vector.

There are a lot of advantages to thinking of matrices as collections of row or column
vectors, as we shall see. As an example, define the 2× 1 column vectors

a =

[
6
3

]
, b =

[
2
5

]
.

and arrange as the columns of the 2× 2 matrix

A =
[

a b
]
=

[
6 2
3 5

]
. (1.1)

In general, a column vector x with n elements can be written as

x =

 x1
...

xn


What happens when both m and n are equal to 1? Then, A is a 1× 1 matrix, but it is

also considered to be a real number, or scalar in the language of linear algebra:

A = [a11] = a11.

This is perhaps a little odd, but turns out to be a useful convention in a number of
situations.

1.2 Transposition of vectors

The rows of the matrix A in equation (1.1) can be seen as elements of column vectors,
say

c =

[
6
2

]
, d =

[
3
5

]
.

This representation of row vectors as column vectors is a bit clumsy, so some trans-
formation which converts a column vector into a row vector, and vice versa would
be useful. The process of converting a column vector a into a row vector is called
transposition, and the transposed version of c is denoted

cT =
[

6 2
]

,

the T superscript denoting transposition. In practice, a prime, ′, is used instead of T.
However, whilst the prime is much simpler to write than the T sign, it is also much
easier to lose track of in writing out long or complicated expressions. So, it is best
initially to use T to denote transposition rather than the prime ′.

A can then be written via its rows as

A =

[
cT

dT

]
=

[
6 2
3 5

]
.

The same ideas can be applied to the matrices P and Q.
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2 Operations with matrices

2.1 Addition, subtraction and scalar multiplication

For vectors, addition and subtraction are defined only for vectors of the same dimen-
sions: if

x =

 x1
...

xn

 , y =

 y1
...

yn

 ,

x + y =

 x1 + y1
...

xn + yn

 , x− y =

 x1 − y1
...

xn − yn

 .

Clearly, the addition or subtraction operation is elementwise. If x and y have different
dimensions, there will be some elements left over once all the elements of the smaller
dimensioned vector have been used up.

Another operation is scalar multiplication: if λ is a real number or scalar, the product
λx is defined as

λx =

 λx1
...

λxn

 ,

so that every element of x is multiplied by the same scalar λ.
The two types of operation can be combined into the linear combination of vectors x

and y,

λx + µy =

 λx1
...

λxn

+

 µy1
...

µyn

 =

 λx1 + µy1
...

λxn + µyn

 .

Equally, one can define the linear combination of vectors x, y, . . . , z by scalars λ, µ, . . . , ν
as

λx + µy + . . . + νz

with typical element
λxi + µyi + . . . + νzi,

provided that all the vectors have the same dimension.
For matrices, these ideas carry over immediately: apply to each column of the ma-

trices involved. For example, if A =
[

a1 . . . an
]

and B =
[

b1 . . . bn
]

, both
m× n, then addition and subtraction are defined elementwise, as for vectors:

A + B =
[

a1 + b1 . . . an + bn
]
=
∥∥aij + bij

∥∥ ,

A− B =
[

a1 − b1 . . . an − bn
]
=
∥∥aij − bij

∥∥ .

Scalar multiplication of A by λ involves multiplying every column vector of A by λ,
and therefore multiplying every element of A by λ :

λA =
[

λa1 . . . λan
]
=
∥∥λaij

∥∥ .
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With the same idea for B, the linear combination of A and B by λ and µ is

λA + µB =
[

λa1 + µb1 . . . λan + µbn
]
=
∥∥λaij + µbij

∥∥ .

For example, consider the matrices

A =

[
6 2
3 5

]
, B =

[
1 1
1 −1

]
with λ = 1, µ = −2 : then

λA + µB = A− 2B

=

[
4 0
1 7

]
.

2.2 Matrix - vector products

2.2.1 Inner product

The simplest form of a matrix vector product is the case where A consists of one row,
so that A is 1× n:

A = aT =
[

a1 . . . an
]

.

If x is an n× 1 vector,

x =

 x1
...

xn

 ,

the product Ax = aTx is called the inner product and is defined as

aTx = a1x1 + . . . + anxn.

One can see that the definition amounts to multiplying corresponding elements in a
and x, and adding up the resultant products. Writing

aTx =
[

a1 . . . an
]  x1

...
xn

 = a1x1 + . . . + anxn

motivates the familiar description of the across and down rule for this product: across
and down is the ’multiply corresponding elements’ part of the definition.

Notice that the result of the inner product is a real number, for example,

cT =
[

6 2
]

, x =

[
6
3

]
, cTx =

[
6 2

] [ 6
3

]
= 36 + 6 = 42.

In general, in the product aTx, a and x must have the same number of elements, n
say, for the product to be defined. If a and x had different numbers of elements, there
would be some elements of a or x left over or not used in the product: e.g.

b =

 1
2
3

 , x =

[
6
3

]
.

When the inner product of two vectors is defined, the vectors are said to be conformable.
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2.3 Orthogonality

Two vectors x and y with the property that xTy = 0 are said to be orthogonal to each
other. For example, if

x =

[
1
1

]
, y =

[
−1

1

]
,

it is clear that xTy = 0. This seems a rather innocuous definition, and yet the idea of
orthogonality turns out to be extremely important in econometrics.

If x and y are thought of as points in R2, and arrows are drawn from the origin to
x and to y, then the two arrows are perpendicular to each other - see Figure 2.1. If y
were defined as

y =

[
1
−1

]
,

the position of the y vector and the corresponding arrow would change, but the per-
pendicularity property would still hold.

Figure 2.1: Orthogonality of the vectors x and y.

2.3.1 Matrix - vector products

Since the matrix

A =

[
6 2
3 5

]
has two rows, now denoted αT

1 and αT
2 , there are two possible inner products with the

vector

x =

[
6
3

]
:

αT
1 x = 42, αT

2 x = 33.

Assembling the two inner product values into a 2× 1 vector defines the product of the
matrix A with the vector x :

Ax =

[
6 2
3 5

] [
6
3

]
=

[
αT

1 x
αT

2 x

]
=

[
42
33

]
.

Focussing only on the part [
6 2
3 5

] [
6
3

]
=

[
42
33

]
,
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one can see that each element of Ax is obtained from an across and down argument.
Sometimes this product is described as forming a linear combination of the columns

of A using the scalar elements in x :

Ax = 6
[

6
3

]
+ 3

[
2
5

]
.

More generally, if

A =
[

a b
]

, x =

[
λ
µ

]
,

Ax = λa + µb.

The general version of these ideas for an m× n matrix A,

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
... . . . ...

am1 am2 . . . amn

 =
[

a1 a2 . . . an
]

.

is straightforward. If x is an n× 1 vector, then the vector Ax is, by the across and down
rule,

Ax =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
... . . . ...

am1 am2 . . . amn




x1
x2
...

xn

 =


a11x1 + . . . + a1nxn
a21x1 + . . . + a2nxn

...
am1x1 + . . . + amnxn

 =



n
∑

j=1
a1jxj

n
∑

j=1
a2jxj

...
n
∑

j=1
amjxj


,

(2.1)

so that the typical element, the ith, is
n
∑

j=1
aijxj. Equally, Ax is the linear combination

a1x1 + . . . + anxn

of the columns of A.

2.4 Matrix - matrix products

Suppose that A is m×n, with columns a1, . . . , an, and B is n× r, with columns b1, . . . , br.
Clearly, each product Ab1, ..., Abr exists, and is m× 1. These products can be arranged
as the columns of a matrix as [

Ab1 Ab2 . . . Abr
]

and this matrix is defined to be the product C of the matrices A and B:

C =
[

Ab1 Ab2 . . . Abr
]
= AB.
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By construction, this must be an m× r matrix, since each column is m× 1 and there
are r columns.

This is not the usual presentation of the definition of the product of two matrices,
which relies on the across and down rule mentioned earlier, and focusses on the elements
of each matrix A and B. Set

B =
[

b1 b2 . . . br
]

(by columns)
= ‖bik‖ , i = 1, ..., n, k = 1, ..., r (typical element)

=


b11 b12 . . . b1r
b21 b22 . . . b2r

...
... . . . ...

bn1 bn2 . . . bnr

 (the array)

What does the typical element of the m × r matrix C look like? Start with the kth
column of C, which is Abk. The ith element in Abk is, from equation (2.1), the inner
product of the elements of the ith row in A,[

ai1 ai2 . . . ain
]

,

with the elements of bk, so that the inner product is

ai1b1k + ai2b2k + . . . + ainbnk =
n

∑
j=1

aijbjk.

So, the ikth element of C is

cik = ai1b1k + ai2b2k + . . . + ainbnk =
n

∑
j=1

aijbjk.

We can see this arising from an across and down calculation by writing

C = AB (2.2)

=



a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

...
ai1 ai2 . . . ain

...
...

...
am1 am2 . . . amn




b11 b12 . . . b1k . . . b1r
b21 b22 . . . b2k . . . b2r

...
...

...
...

bn1 bn2 . . . bnk . . . bnr

 (2.3)

=

∥∥∥∥∥ n

∑
j=1

aijbjk

∥∥∥∥∥ . (2.4)

These ideas are simple, but a little tedious. Numerical examples are equally tedious!
As an example, using

A =

[
6 2
3 5

]
,

we can find the matrix B such that

1. the first column of AB adds together the columns of A,
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2. the second column is the difference of the first and second columns of A,

3. the third column is 2× the first column of A,

4. the fourth column is zero.

It is easy to check that B is

B =

[
1 1 2 0
1 −1 0 0

]
and that

C = AB

=

[
6 2
3 5

] [
1 1 2 0
1 −1 0 0

]
=

[
8 4 12 0
8 −2 6 0

]
.

Arithmetic calculations of matrix products almost always use the elementwise across
and down formula. However, there are many situations in econometrics where alge-
braic rather than arithmetic arguments are required. In these cases, the viewpoint of
matrix multiplication as linear combinations of columns is much more powerful.

Clearly one can give many more examples of different dimensions and complexi-
ties - but the same basic rules apply. To multiply two matrices A and B together, the
number of columns in A must match the number of rows in B - this is conformability in
action again. The resulting product will have number of rows equal to the number in
A and number of columns equal to the number in B.

If this conformability rule does not hold, then the product of A and B is not defined.

2.5 Matlab

One should also say that as the dimensions of the matrices increases, so the tedious-
ness of the calculations increase. The solution to this for numerical calculation is to
appeal to the computer. Programs like Matlab and Excel (and a number of others,
some of them free) resolve this difficulty easily.

In Matlab, symbols for row or column vectors do not need any particular differen-
tiation: they are distinguished by how they are defined. For example, the following
Matlab commands define rowvec as a 1× 4 vector, and colvec as a 4× 1 vector, then
display the contents of these variables, and do a calculation:

>> rowvec = [1 2 3 4];

>> colvec = [1;2;3;4];

>> rowvec

rowvec =

1 2 3 4

>> colvec

colvec =

1 2 3 4

>> rowvec*colvec

ans =

30
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So, the semi-colon indicates the end of a row in a matrix or vector; it can be replaced
by a carriage return. Notice the difference in how a row vector and a column vector
is defined. One can see that the product rowvec*colvec is well defined, just because
rowvec is a 1× 4 vector, and colvec is a 4× 1 vector.

Matlab also allows elementwise multiplication of two vectors using the �∗ operator:
if

x =

[
x1
x2

]
, y =

[
y1
y2

]
,

then

x � ∗y =

[
x1y1
x2y2

]
and one can see that the inner product of x and y can be obtained as the sum of the
elements of x and y. In Matlab, this would be obtained as

sum (x � ∗y) .

In the example above, this calculation fails since rowvec is a 1× 4 vector, and colvec

is a 4× 1 vector:

>> sum(rowvec .* colvec) ???

Error using ==> times Matrix dimensions must agree.

For this to work, rowvec would have to be transposed as rowvec’, so that transposition
in Matlab is very natural.

Allowing for such difficulties, matrix multiplication in Matlab is very simple:

>> A = [6 2; 3 5];

>> B = [1 1 2 0;1 -1 0 0];

>> C = A * B;

>> disp(C)

8 4 1

2 0 8

-2 6 0

Notice how the matrices are defined here through their rows. The disp() command
displays the contents of the object referred to.

It is less natural in Matlab to define matrices by columns - a typical example of how
mathematics and computing have conflicts of notation. However, once columns a and
b have been defined, the concatenation operation

[
a b

]
collects the columns into a

matrix:

>> a = [6;2];

>> b = [3;5];

>> C = [a b];

>> disp(C)

6 3

2 5

Notice that the disp(C) command does not label the result that is printed out. Simply
typing C would preface the output by C =.
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2.6 Pre and Post Multiplication

If C = AB, as above, say that B is pre-multiplied by A to get C, and that A is post-
multiplied by B to get C.

This distinction between pre and post multiplication is important, in the following
sense. Suppose that A and B are matrices such that the products AB and BA are both
defined. If A is m× n, B must have n rows for AB to be defined. For BA to be defined,
B must have m columns to match the m rows in A. So, AB and BA are both defined if
A is m× n and B is n×m.

Even when both products are defined, there is no reason for the two products co-
incide. The first thing to notice is that AB is a square, m× m, matrix, whilst BA is a
square, n× n, matrix. Different sized matrices cannot be equal. To illustrate, use the
matrices

B2 =

 6 −3
2 5
−3 1

 , C =

[
6 2 −3
3 5 −1

]
:

B2C =

 6 −3
2 5
−3 1

 [ 6 2 −3
3 5 −1

]
=

 27 −3 −15
27 29 −11
−15 −1 8

 ,

CB2 =

[
6 2 −3
3 5 −1

]  6 −3
2 5
−3 1

 =

[
49 −11
31 15

]
.

Even when m = n, so that AB and BA are both m× m matrices, the products can
differ: for example,

A =

[
6 2
3 5

]
, B =

[
1 1
1 −1

]
,

AB =

[
8 4
8 −2

]
, BA =

[
9 7
3 −3

]
.

In cases where AB = BA, the matrices A and B are said to commute.

2.7 Transposition

A column vector x can be converted to a row vector xT by transposition:

x =

 x1
...

xn

 , xT =
[

x1 . . . xn
]

.

Transposing xT as
(
xT)T reproduces the original vector x. How do these ideas carry

over to matrices?
If the m× n matrix A can be written as A =

[
a1 . . . an

]
, the transpose of A, AT,

is defined as the matrix whose rows are aT
i :

AT =

 aT
1
...

aT
n

 .
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In terms of elements, if

ai =

 a1i
...

ani


then

A =


a11 a12 . . . a1n

...
...

...
ai1 ai2 . . . ain

...
...

...
am1 am2 . . . amn

 , AT =


a11 . . . ai1 . . . am1
a12 . . . ai2 . . . am2

...
...

...
a1n . . . ain . . . amn

 .

One can see that the first column of A has now become the first row of AT. Notice too
that AT is an n×m matrix if A is an m× n matrix.

Transposing AT takes the first column of AT and writes it as a row, which coincides
with the first row of A. The same argument applies to the other columns of AT, so that(

AT
)T

= A.

2.7.1 The product rule for transposition

This states that if C = AB, then CT = BT AT.
How to see this? Consider the following example,

A =

[
a11 a12 a13
a21 a22 a23

]
, B =

 b11 b12 b13 b14
b21 b22 b23 b24
b31 b32 b33 b34


where

c23 = a21b13 + a22b23 + a23b33 =
3

∑
k=1

a2kbk3. (2.5)

One can see that

BT AT =


b11 b21 b31
b12 b22 b32
b13 b23 b33
b14 b24 b34


 a11 a21

a12 a22
a13 a23


and that the (3, 2) element of this product is actually c23 :

b13a21 + b23a22 + b33a23 = a21b13 + a22b23 + a23b33 = c23.

In summation notation, we see that from BT AT

c23 =
3

∑
k=1

bk3a2k,

where the position of the index of summation is due to the transposition. So, in sum-
mation notation, the calculation of c23 from BT AT equals that from equation (2.5).
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More generally, the (i, j) element of AB,

3

∑
k=1

aikbkj

is the (j, i) element of BT AT. But this means that BT AT must be the transpose of AB,
since the elements in the ith row of AB are being written in the ith column of BT AT.

This Product Rule for Transposition can be applied again to find the transpose
(
CT)T

of CT : (
CT
)T

=
(

BT AT
)T

=
(

AT
)T (

BT
)T

= AB = C.

3 Special Types of Matrix

3.1 The zero matrix

The most obvious special type of matrix is one whose elements are all zeros. In typical
element notation, the zero matrix is

0 = ‖0‖ .

Since there is no indexing on the elements, it is not obvious what the dimension of this
matrix is, Sometimes one writes 0mn to indicate a zero matrix of dimension m× n. The
same ideas apply to vectors whose elements are all zero.

The effect of the zero matrix in any product that is defined is simple:

0A = 0, B0 = 0.

This is easy to check using the across and down rule.

3.2 The identity or unit matrix

Vectors of the form [
1
0

]
,
[

0
1

]
in 2 dimensions

 1
0
0

 ,

 0
1
0

 ,

 0
0
1

 in 3 dimensions


1
0
...
0
0

 ,


0
1
0
...

0

 , . . . ,


0
0
...
0
1

 in n dimensions

are called coordinate vectors. They are often given a characteristic notation, e1, . . . , en,
in n dimensions. When arranged as columns of a matrix in the natural order, e1, . . . , en,

13



3.3 Diagonal matrices ECON61001 Lecture 2

a matrix with a characteristic pattern elements emerges, with a special notation:[
e1 e2

]
=

[
1 0
0 1

]
= I2

[
e1 e2 e3

]
=

 1 0 0
0 1 0
0 0 1

 = I3

[
e1 e2 . . . en

]
=


1 0 . . . 0
0 1 . . . 0
...

... . . . ...
0 0 . . . 1

 = In.

The diagonal of this matrix is where the 1 elements are located, and every other element
is zero.

Consider the effect of I2 on the matrix

A =

[
6 2
3 5

]
by both pre and post multiplication:

I2A =

[
1 0
0 1

] [
6 2
3 5

]
=

[
6 2
3 5

]
= A,

AI2 =

[
6 2
3 5

] [
1 0
0 1

]
=

[
6 2
3 5

]
= A,

as is easily checked by the across and down rule.
Because any matrix is left unchanged by pre or post multiplication by an appro-

priately dimensioned In, In is called an identity matrix of dimension n. Sometimes it is
called a unit matrix of dimension n. Notice that In is necessarily a square matrix.

3.3 Diagonal matrices

The identity matrix is an example of a diagonal matrix, a matrix whose elements are
all zero except for those on the diagonal. Usually diagonal matrices are taken to be
square, for example

D =

 1 0 0
0 2 0
0 0 3

 .

They also produce characteristic effects when pre or post multiplying another matrix.
Consider the diagonal matrix

B =

[
2 0
0 −2

]
and the products AB, BA for A as defined in the previous section:

AB =

[
6 2
3 5

] [
2 0
0 −2

]
=

[
12 −4
6 −10

]
,

BA =

[
2 0
0 −2

] [
6 2
3 5

]
=

[
12 4
−6 −10

]
.

14



3 SPECIAL TYPES OF MATRIX ECON61001 Lecture 2

Comparing the results, we can deduce that post multiplication by a diagonal matrix
multiplies each column of A by the corresponding diagonal element, whereas pre mul-
tiplication multiplies each row by the corresponding diagonal element.

3.4 Symmetric matrices

Symmetric matrices are matrices having the property that A = AT. Notice that such
matrices must be square, since if A is m× n, AT is n× m, and to have equality of A
and AT, they must have the same dimension, so that m = n is required.

Suppose that A is a 3× 3 symmetric matrix, with typical element aij :

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 ,

so that

AT =

 a11 a21 a31
a12 a22 a32
a13 a23 a33

 .

Equality of matrices is defined as equality of all elements. This is fine on the diagonals,
since A and AT have the same diagonal elements. For the off diagonal elements, we
end up with the requirements

a12 = a21, a13 = a31, a23 = a32

or more generally
aij = aji for i 6= j.

The effect of this conclusion is that in a symmetric matrix, the ’triangle’ of above
diagonal elements coincides with the triangle of below diagonal elements. It is as if
the upper triangle is folded over the diagonal to become the lower triangle.

A simple example is

A =

[
1 2
2 1

]
.

A more complicated example uses the 2× 3 matrix C

C =

[
6 2 −3
3 5 −1

]
and calculates the 3× 3 matrix

CTC =

 6 3
2 5
−3 −1

 [ 6 2 −3
3 5 −1

]

=

 45 27 −21
27 29 −11
−21 −11 10

 ,

which is clearly symmetric.
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This illustrates the general proposition that if A is an m× n matrix, the product AT A
is a symmetric n× n matrix. Proof? Compute the transpose of AT A using the product
rule for transposition: (

AT A
)T

= AT
(

AT
)T

= AT A.

Since AT A is equal to its transpose, it must be a symmetric matrix. Such symmetric
matrices appear frequently in econometrics.

It should be clear that diagonal matrices are symmetric, since all their off-diagonal
elements are equal (zero), and thence the identity matrix In is also symmetric.

3.5 The outer product

The inner product of two n× 1 vectors x and y, xTy, is automatically a 1× 1 quantity, a
scalar, although it can be interpreted as a 1× 1 matrix, a matrix with a single element.

Suppose one considered the product of x with xT. Is this defined? If A is m× n and B
is n× r, then the product AB is m× r. Applying this logic to xxT, this is (n× 1) (1× n) ,
so the resulting product is defined, and is an n× n matrix - the outer product of x and
xT, the word ’outer’ being used to distinguish from the inner product.

How does the across and down rule work here? Suppose that

x =

[
6
3

]
.

Then,

xxT =

[
6
3

] [
6 3

]
.

Here, there is 1 element in row one of the ’matrix’ x, and 1 element in column one of
the matrix xT, so the across and down rule still works - it is just that there is only one
product per row and column combination. So,

xxT =

[
36 18
18 9

]
,

and it is obvious from this that xxT is a symmetric matrix.
One can see that this outer product need not be restricted to vectors of the same

dimension. If x is n× 1 and y is m× 1, then

xyT =

 x1
...

xn

 [ y1 . . . ym
]
=


x1y1 x1y2 . . . x1ym
x2y1 x2y2 . . . x2ym

xny1 xny2 . . . xnym

 .

So, xyT is n×m, and consists of rows which are yT multiplied by an element of the x
vector.

Another interesting and useful example involves a vector with every element equal
to 1,

1 =

 1
...
1

 .
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Sometimes this is written as 1n to indicate an n× 1 vector, and is called the sum vector.
Why? Consider the impact of 12 on the 2× 1 vector x used above:

1T
2 x =

[
1 1

] [ 6
3

]
= 9,

i.e. an inner product of x with the sum vector is the sum of the elements of x. Dividing
through by the number of elements in x produces the average of the elements of x - i.e.
the ’sample mean’ of the elements of x.

The outer product of x with 12 is also interesting:

12xT =

[
1
1

] [
6 3

]
=

[
6 3
6 3

]
,

x1T
2 =

[
6
3

] [
1 1

]
=

[
6 6
3 3

]
,

showing that pre multiplication of an xT by 1 repeats xT as rows of the product, whilst
post multiplication of x by 1T repeats x as the columns of the product.

Finally,

1n1T
n =

 1 . . . 1
1 . . . 1
1 . . . 1

 ,

an n × n matrix with every element equal to 1. This type of matrix also appears in
econometrics!

3.6 Triangular matrices

A square lower triangular matrix has all elements above the main diagonal equal to
zero, whilst a square upper triangular matrix has all elements below the main diagonal
equal to zero. A simple example of a lower triangular matrix is

A =

 a11 0 0
a21 a22 0
a31 a32 a33

 .

Clearly, for this matrix, AT is an upper triangular matrix.
One can adapt the definition to rectangular matrices: for example, if two arbitrary

rows are added to A, so that it becomes 5× 3, it would still be considered lower tri-
angular. Equally, if, for example, the third column of A above is removed, A is still
considered lower triangular.

Often, we use unit triangular matrices, where the diagonal elements are all equal to
1 : e.g.  1 2 0

0 1 1
0 0 1

 . (3.1)
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3.7 Partitioned matrices

Sometimes, especially with big matrices, it is useful to organise the elements of the
matrix into components which are themselves matrices, for example,

B =


1 2 0 0
8 3 0 0
0 0 7 4
0 0 6 5


Here it would be reasonable to write

B =

[
B11 0
0 B22

]
,

where Bii, i = 1, 2, represent 2× 2 matrices. B is an example of a partitioned matrix: that
is, an m× n matrix A say,

A =
∥∥aij

∥∥ ,

where the elements of A are organised into sub-matrices. An example might be

A =

[
A11 A12 A23
A21 A22 A23

]
, (3.2)

where the sub - matrices in the first row block have r rows, and therefore m− r rows in
the second row block. The column blocks might be defined by (for example) 3 columns
in the first column block, 4 in the second and n− 7 in the third column block.

Another simple example might be

A =
[

A1 A2 A3
]

, x =

 x1
x2
x3

 ,

where A and therefore A1, A2, A3 have m rows, A1 has n1 columns, A2 has n2 columns,
A3 has n3 columns. The subvectors in x must have n1, n2 and n3 rows respectively, for
the product Ax to exist.

Suppose that n1 + n2 + n3 = n, so that A is m× n. The ith element of Ax is

n

∑
i=1

aijxj

but the summation can be broken up into the first n1 terms,

n1

∑
i=1

aijxj,

the next n2 terms,
n1+n2

∑
i=n1+1

aijxj,

and the next n3 terms,
n

∑
i=n1+n2+1

aijxj.
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The point about the use of partitioned matrices is that the product Ax can be repre-
sented as

Ax = A1x1 + A2x2 + Ax3

by applying the across and down rule to the submatrices and the subvectors, a much
simpler representation than the use of summations.

Each of the components is a conformable matrix-vector product: this is essential in
any use of partitioned matrices to represent some matrix product. For example, using
A from equation (3.2) and B as

B =

 B11
B21
B31

 ,

it is easy to write

AB =

[
A11 A12 A23
A21 A22 A23

]  B11
B21
B31


=

[
A11B11 + A12B21 + A13B31
A21B11 + A22B21 + A23B31

]
.

But, what are the row dimensions for the submatrices in B? What are the possible
column dimensions for the submatrices in B?

4 Matrices, vectors and econometrics

The data on weights and heights for 12 students in the data matrix

D =



155 70
150 63
180 72
135 60
156 66
168 70
178 74
160 65
132 62
145 67
139 65
152 68


would seem to be ideally suited for fitting a two variable regression model

yi = α + βxi + ui, i = 1, ..., 12.

Here, the first column of D contains all the weight data, the data on the dependent
variable yi, and so should be labelled y. The second column of D contains all the data
on the explanatory variable height, in the vector x say, so that

D =
[

y x
]

.
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If we define a 12× 1 vector with every element 1,

112 =

 1
...
1

 ,

and a 12× 1 vector u to contain the error terms,

u =

 u1
...

u12


the regression model can be written in terms of the three data vectors y, 112 and x as

y = 112α + xβ + u.

To see this, think of the ith elements of the vectors on the left and right hand sides.
The standard next step is then to combine the data vectors for the explanatory vari-

ables into a matrix
X =

[
112 x

]
,

and then define a 2× 1 vector δ to contain the parameters α, β as

δ =

[
α
β

]
to give the data matrix representation of the regression model as

y = Xδ + u.

For the purposes of developing the theory of regression, this is the most convenient
form of the regression model. It can represent regression models with any number of
explanatory variables, and thus any number of parameters. The obvious point is that
a knowledge of vector and matrix operations is needed to use and understand this
form.

We shall see later that there are two particular matrix and vector quantities associ-
ated with a regression model. The first is the matrix XTX, and the second the vector
XTy. The following Matlab code snippet provides the numerical values of these quan-
tities for the weight data:

>> dset = load(’weights.mat’);

>> xtx = dset.X’ * dset.X;

>> xty = dset.X’ * dset.y;

>> disp(xtx)
12 802

802 53792
>> disp(xty)
1850

124258

Hand calculation is of course possible, but not recommended.
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