Difference between revisions of "ExampleCodeIV"

From ECLR
Jump to: navigation, search
(Created page with "Below you can find functions that, inter alia, deliver an IV estimate, perform a Hausmann test on endogeneity and a Sargan test on instrument validity. == IVest.m == This is...")
 
(IVest.m)
Line 4: Line 4:
  
 
This is the function that delivers IV parameter estimates. It will work for exactly and over-identified cases
 
This is the function that delivers IV parameter estimates. It will work for exactly and over-identified cases
 +
 +
<source>
 +
function [biv,bse,r2] = IVest(y,x,z);
 +
% This function performs an IV estimation
 +
% input:    y, vector with dependent variable
 +
%          x, matrix with explanatory variable (include vector of ones if
 +
%          you want constant
 +
%          z, matrix with instrumental variables (at least as many cols as x)
 +
% output:  biv, estimated parameters using IV
 +
%          bse, standard errors for biv
 +
%          r2, Rsquared
 +
 +
[n,kx] = size(x);      % sample size - n, number of explan vars (incl constant) - kx 
 +
[n,kz] = size(z);      % sample size - n, number of instrumental vars - kz
 +
pz    = z*inv(z'*z)*z';    % Projection matrix
 +
xpzxi  = inv(x'*pz*x);      % this is also (Xhat'Xhat)^(-1)
 +
 +
biv    = xpzxi*x'*pz*y;    % IV estimate
 +
res    = y - x*biv;        % IV residuals
 +
ssq    = res'*res/(n-kx);  % Sample variance for IV residuals
 +
s      = sqrt(ssq);        % Sample Standard deviation for IV res
 +
bse    = ssq*xpzxi;        % Variance covariance matrix for IV estimates
 +
bse    = sqrt(diag(bse));  % Extract diagonal and take square root -> standard errors for IV estimators
 +
ym    = y - mean(y);
 +
r2    = 1 - (res'*res)/(ym'*ym);
 +
end
 +
<\source>

Revision as of 18:01, 3 December 2012

Below you can find functions that, inter alia, deliver an IV estimate, perform a Hausmann test on endogeneity and a Sargan test on instrument validity.

IVest.m

This is the function that delivers IV parameter estimates. It will work for exactly and over-identified cases

<source> function [biv,bse,r2] = IVest(y,x,z); % This function performs an IV estimation % input: y, vector with dependent variable % x, matrix with explanatory variable (include vector of ones if % you want constant % z, matrix with instrumental variables (at least as many cols as x) % output: biv, estimated parameters using IV % bse, standard errors for biv % r2, Rsquared

[n,kx] = size(x);  % sample size - n, number of explan vars (incl constant) - kx [n,kz] = size(z);  % sample size - n, number of instrumental vars - kz pz = z*inv(z'*z)*z';  % Projection matrix xpzxi = inv(x'*pz*x);  % this is also (Xhat'Xhat)^(-1)

biv = xpzxi*x'*pz*y;  % IV estimate res = y - x*biv;  % IV residuals ssq = res'*res/(n-kx);  % Sample variance for IV residuals s = sqrt(ssq);  % Sample Standard deviation for IV res bse = ssq*xpzxi;  % Variance covariance matrix for IV estimates bse = sqrt(diag(bse));  % Extract diagonal and take square root -> standard errors for IV estimators ym = y - mean(y); r2 = 1 - (res'*res)/(ym'*ym); end <\source>