Difference between revisions of "Point Estimation Exercises"
Line 3: | Line 3: | ||
= Exercises = | = Exercises = | ||
− | Worked solutions to these questions can be found here: [http://youtu.be/TCHG3mP3q1g?hd=1 Q1], [http://youtu.be/iXwkvtZpjm8?hd=1 Q2], [http://youtu.be/mQymVsrxmPU?hd=1 Q3], [http://youtu.be/x4lzkCx3bNw?hd=1 Q4] | + | Worked solutions to these questions can be found here: [http://youtu.be/TCHG3mP3q1g?hd=1 Q1], [http://youtu.be/iXwkvtZpjm8?hd=1 Q2], [http://youtu.be/mQymVsrxmPU?hd=1 Q3], [http://youtu.be/x4lzkCx3bNw?hd=1 Q4], [http://youtu.be/PqZko0Yi8Fc?hd=1 Q5] and [http://youtu.be/8-uQdtCZdlA?hd=1 Q6] |
<ol> | <ol> | ||
Line 52: | Line 52: | ||
<p><math>\Pr \left( X=0\right) =0.3,\;\;\;\Pr \left( X=1\right) =0.7.</math></p> | <p><math>\Pr \left( X=0\right) =0.3,\;\;\;\Pr \left( X=1\right) =0.7.</math></p> | ||
<ol> | <ol> | ||
− | <li><p>Enumerate all the possible samples, and find their probabilities of being drawn. You should have eight possible samples.</p></li> | + | <li><p><math>[L1,L2]</math> Enumerate all the possible samples, and find their probabilities of being drawn. You should have eight possible samples. {e.g. <math>P(1,0,1)=0.3*0.7^2)</math>}</p></li> |
− | <li><p>Find the sampling distribution of the random variable <math>T</math>, the total number of ones in each sample.</p></li> | + | <li><p><math>[L1,L2]</math> Find the sampling distribution of the random variable <math>T</math>, the total number of ones in each sample. {e.g. <math>P(T=1)=0.189)</math>}</p></li> |
− | <li><p>Check that the probability distribution of <math>T</math> is the Binomial distribution for <math>n=3</math> and <math>\pi =0.7</math>, by calculating</p> | + | <li><p><math>[L2]</math> Check that the probability distribution of <math>T</math> is the Binomial distribution for <math>n=3</math> and <math>\pi =0.7</math>, by calculating</p> |
<p><math>\Pr \left( T=t\right) =\binom{3}{t}\left( 0.7\right) ^{t}\left( 0.3\right)^{3-t}</math></p> | <p><math>\Pr \left( T=t\right) =\binom{3}{t}\left( 0.7\right) ^{t}\left( 0.3\right)^{3-t}</math></p> | ||
<p>for <math>t=0,1,2,3</math>.</p></li> | <p>for <math>t=0,1,2,3</math>.</p></li> | ||
− | <li><p>Find the probability distribution of <math>P</math>, the sample proportion of ones. How is this probability distribution related to that of <math>T?</math></p></li> | + | <li><p><math>[L1,L2]</math> Find the probability distribution of <math>P</math>, the sample proportion of ones. How is this probability distribution related to that of <math>T?</math> {e.g. <math>Pr(P=2/3)=0.441)</math>}</p></li> |
− | <li><p>Is <math>P</math> an unbiased estimator of <math>\Pr \left( X=1\right) ?</math></p></li></ol> | + | <li><p><math>[L2]</math> Is <math>P</math> an unbiased estimator of <math>\Pr \left( X=1\right) ?</math> {yes}</p></li></ol> |
</li> | </li> | ||
− | <li><p>A simple random sample of three observations is taken from a population with mean <math>\mu </math> and variance <math>\sigma ^{2}</math>. The three sample random variables are denoted <math>Y_{1},Y_{2},Y_{3}</math>. A sample statistic is being sought to estimate <math>\mu </math>. The statistics being considered are</p> | + | <li><p><math>[L2]</math> A simple random sample of three observations is taken from a population with mean <math>\mu </math> and variance <math>\sigma ^{2}</math>. The three sample random variables are denoted <math>Y_{1},Y_{2},Y_{3}</math>. A sample statistic is being sought to estimate <math>\mu </math>. The statistics being considered are</p> |
<ol> | <ol> | ||
<li><ol> | <li><ol> | ||
Line 68: | Line 68: | ||
<li><p><math>A_{4}=0.75Y_{1}+0.75Y_{2}-0.5Y_{3}</math>.</p></li></ol> | <li><p><math>A_{4}=0.75Y_{1}+0.75Y_{2}-0.5Y_{3}</math>.</p></li></ol> | ||
</li> | </li> | ||
− | <li><p>Which of these statistics yields an unbiased estimator of <math>\mu ?</math></p></li> | + | <li><p>Which of these statistics yields an unbiased estimator of <math>\mu ?</math> {<math>A_1,A_2</math> and <math>A_4</math>}</p></li> |
− | <li><p>Of those that are unbiased, which is the most efficient?</p></li> | + | <li><p>Of those that are unbiased, which is the most efficient? {<math>Var(A_1)=Var(Y)/3</math>}</p></li> |
<li><p>Of those that are unbiased, find the efficiency with respect to <math>A_{1}. </math></p></li></ol> | <li><p>Of those that are unbiased, find the efficiency with respect to <math>A_{1}. </math></p></li></ol> | ||
</li></ol> | </li></ol> | ||
= Footnotes = | = Footnotes = |
Revision as of 11:06, 17 September 2014
Exercises
Worked solutions to these questions can be found here: Q1, Q2, Q3, Q4, Q5 and Q6
[math][L1,L2][/math]Suppose that [math]Y\thicksim N\left( 6,2\right) [/math], and that [math]\bar{Y}[/math] is the sample mean of a (simple) random sample of size [math]n[/math]. Find:
[math]\Pr \left( Y\gt 8\right)[/math]; {0.0793}
[math]\Pr \left( \bar{Y}\gt 8\right) \;[/math]when [math]n=1;[/math] {0.0793}
[math]\Pr \left( \bar{Y}\gt 8\right) \;[/math]when [math]n=2;[/math] {0.0228}
[math]\Pr \left( \bar{Y}\gt 8\right) \;[/math]when [math]n=5;[/math] {0.0000}
Sketch, on the same axes, the sampling distribution of [math]\bar{Y}[/math] for [math]n=1,2,5[/math].
[math][L1,L2][/math] In a certain population, 60% of all adults own a car. If a simple random sample of 100 adults is taken, what is the probability that at least 70% of the sample will be car owners? (Optional: use EXCEL to find the exact probability.) {0.0207 and 0.0262 are both approximations}
[math][L1,L2][/math]When set correctly, a machine produces hamburgers of mean weight [math]100g[/math] each and standard deviation [math]5g[/math] each. The weight of hamburgers is known to be normally distributed. The hamburgers are sold in packets of four.
What is the sampling distribution of the total weight of hamburgers in a packet? In stating this sampling distribution, state carefully what results you using and any assumptions you have to make. {N(400,400), independence}
A customer claims that packets of hamburgers are underweight. A trading standards officer is sent to investigate. He selects one packet of four hamburgers and finds that the weight of hamburgers in it is [math]390g[/math]. What is the probability of a packet weighing as little as [math]390g[/math] if the machine is set correctly? Do you consider that this finding constitutes evidence that the machine has been set to deliver underweight hamburgers? {0.3085}
A discrete random variable, [math]Y[/math], has the following probability distribution:
[math]y[/math] [math]0[/math] [math]1[/math] [math]2[/math] [math]p\left( y\right) [/math] [math]0.3[/math] [math]0.4[/math] [math]0.3[/math] [math][L1,L2][/math] What are [math]E\left[ Y\right] [/math] and [math]y_{\min }[/math], where [math]y_{\min }[/math] is the smallest possible value of [math]Y?[/math]
[math][L1,L2][/math] Simple random samples of two observations are to be drawn with replacement from this population. Write down all possible samples, and the probability of each sample. {e.g. ([math]P(y_1=0, y_2=2)=0.09[/math]} Use this to obtain the sampling distribution of each of the following statistics:
the sample mean, [math]\bar{Y};[/math] {e.g. [math]P(\bar{Y}=0.5)=0.24)[/math]}
the minimum of the two observations, [math]M[/math]. {[math]P(M=1)=0.4[/math]}
[math][L2][/math] Calculate [math]E\left[ \bar{Y}\right] [/math] and [math]E\left[ M\right] [/math]. State whether each is an unbiased estimator of the corresponding population parameter. {[math]\bar{Y}[/math] yes, [math]M[/math] no}
A random sample of size three is drawn from the distribution of a Bernoulli random variable [math]X[/math], where
[math]\Pr \left( X=0\right) =0.3,\;\;\;\Pr \left( X=1\right) =0.7.[/math]
[math][L1,L2][/math] Enumerate all the possible samples, and find their probabilities of being drawn. You should have eight possible samples. {e.g. [math]P(1,0,1)=0.3*0.7^2)[/math]}
[math][L1,L2][/math] Find the sampling distribution of the random variable [math]T[/math], the total number of ones in each sample. {e.g. [math]P(T=1)=0.189)[/math]}
[math][L2][/math] Check that the probability distribution of [math]T[/math] is the Binomial distribution for [math]n=3[/math] and [math]\pi =0.7[/math], by calculating
[math]\Pr \left( T=t\right) =\binom{3}{t}\left( 0.7\right) ^{t}\left( 0.3\right)^{3-t}[/math]
for [math]t=0,1,2,3[/math].
[math][L1,L2][/math] Find the probability distribution of [math]P[/math], the sample proportion of ones. How is this probability distribution related to that of [math]T?[/math] {e.g. [math]Pr(P=2/3)=0.441)[/math]}
[math][L2][/math] Is [math]P[/math] an unbiased estimator of [math]\Pr \left( X=1\right) ?[/math] {yes}
[math][L2][/math] A simple random sample of three observations is taken from a population with mean [math]\mu [/math] and variance [math]\sigma ^{2}[/math]. The three sample random variables are denoted [math]Y_{1},Y_{2},Y_{3}[/math]. A sample statistic is being sought to estimate [math]\mu [/math]. The statistics being considered are
[math]A_{1}=\dfrac{1}{3}\left( Y_{1}+Y_{2}+Y_{3}\right) ;[/math]
[math]A_{2}=\dfrac{1}{2}\left( Y_{1}+Y_{2}\right) ;[/math]
[math]A_{3}=\dfrac{1}{2}\left( Y_{1}+Y_{2}+Y_{3}\right) ;[/math]
[math]A_{4}=0.75Y_{1}+0.75Y_{2}-0.5Y_{3}[/math].
Which of these statistics yields an unbiased estimator of [math]\mu ?[/math] {[math]A_1,A_2[/math] and [math]A_4[/math]}
Of those that are unbiased, which is the most efficient? {[math]Var(A_1)=Var(Y)/3[/math]}
Of those that are unbiased, find the efficiency with respect to [math]A_{1}. [/math]