Difference between revisions of "Probability MomentsExp Exercises"

From ECLR
Jump to: navigation, search
(Exercises)
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
  
  
 +
= Exercises =
  
 
+
Worked solutions to these questions can be found here: [http://youtu.be/UonenSstzlQ?hd=1 Q1], [http://youtu.be/olMokm6UFs0?hd=1 Q2] and [http://youtu.be/k9o8zKHl60Q?hd=1 Q3].
= Exercises =
 
  
 
<ol>
 
<ol>
 
+
<li><p><math>[L2]</math> Suppose that <math>X</math> is a Binomial random variable with parameters <math>n=3,</math> <math>\pi =0.5,</math> show by direct calculation that <math>E\left[ X\right] =1.5</math> and <math>var \left[ X\right] =0.75</math>.</p></li>
<li><p>Suppose that <math>X</math> is a Binomial random variable with parameters <math>n=3,</math> <math>\pi =0.5,</math> show by direct calculation that <math>E\left[ X\right] =1.5</math> and <math>var \left[ X\right] =0.75</math>.</p></li>
+
<li><p><math>[L2]</math> The continuous random variable <math>X</math> has probability density function given by</p>
<li><p>The continuous random variable <math>X</math> has probability density function given by</p>
 
 
<p><math>f(x)=\left\{\begin{array}{c}0.1+kx,\quad 0\leq x\leq 5, \\
 
<p><math>f(x)=\left\{\begin{array}{c}0.1+kx,\quad 0\leq x\leq 5, \\
 
0,\quad \text{otherwise}.
 
0,\quad \text{otherwise}.
Line 14: Line 13:
 
\right.</math></p>
 
\right.</math></p>
 
<ol>
 
<ol>
<li><p>Find the value of the constant, <math>k</math>, which ensures that this is a proper density function.</p></li>
+
<li><p>Find the value of the constant, <math>k</math>, which ensures that this is a proper density function. Solution: 1/25</p></li>
<li><p>Evaluate <math>E[X]</math> and <math>var[X]</math>.</p></li></ol>
+
<li><p>Evaluate <math>E[X]</math> and <math>var[X]</math> 35/12 and 1.9097.</p></li></ol>
 
</li>
 
</li>
<li><p>Use the random number generator in EXCEL to obtain <math>100</math> observations from a <math>N\left( 2,1\right) </math> distribution. When doing so, enter the ''last four digits'' from your registration number in the '''Random Seed''' field.</p>
+
<li><p><math>[L2]</math> Use the random number generator in EXCEL to obtain <math>100</math> observations from a <math>N\left( 2,1\right) </math> distribution. When doing so, enter the ''last four digits'' from your registration number in the '''Random Seed''' field.</p>
 
<p>Use EXCEL to calculate the following:</p>
 
<p>Use EXCEL to calculate the following:</p>
 
<ol>
 
<ol>
Line 28: Line 27:
 
<li><p>the probability that a random variable, with a <math>N\left( 2,1\right)</math> distribution, is less than <math>1</math>.</p></li></ol>
 
<li><p>the probability that a random variable, with a <math>N\left( 2,1\right)</math> distribution, is less than <math>1</math>.</p></li></ol>
  
<p>What do you think would might happen to these comparisons if you were to generate <math>1000</math> obervations, rather than just <math>100</math>?</p></li></ol>
+
<p>What do you think would might happen to these comparisons if you were to generate <math>1000</math> observations, rather than just <math>100</math>?</p></li></ol>
  
 
= Footnotes =
 
= Footnotes =

Latest revision as of 15:22, 5 September 2014


Exercises

Worked solutions to these questions can be found here: Q1, Q2 and Q3.

  1. [math][L2][/math] Suppose that [math]X[/math] is a Binomial random variable with parameters [math]n=3,[/math] [math]\pi =0.5,[/math] show by direct calculation that [math]E\left[ X\right] =1.5[/math] and [math]var \left[ X\right] =0.75[/math].

  2. [math][L2][/math] The continuous random variable [math]X[/math] has probability density function given by

    [math]f(x)=\left\{\begin{array}{c}0.1+kx,\quad 0\leq x\leq 5, \\ 0,\quad \text{otherwise}. \end{array} \right.[/math]

    1. Find the value of the constant, [math]k[/math], which ensures that this is a proper density function. Solution: 1/25

    2. Evaluate [math]E[X][/math] and [math]var[X][/math] 35/12 and 1.9097.

  3. [math][L2][/math] Use the random number generator in EXCEL to obtain [math]100[/math] observations from a [math]N\left( 2,1\right) [/math] distribution. When doing so, enter the last four digits from your registration number in the Random Seed field.

    Use EXCEL to calculate the following:

    1. the simple average and variance of these [math]100[/math] observations

    2. the proportion of observations which are less than [math]1.[/math]

    Now compare these with

    1. the theoretical mean and variance of a [math]N\left( 2,1\right)[/math] distribution

    2. the probability that a random variable, with a [math]N\left( 2,1\right)[/math] distribution, is less than [math]1[/math].

    What do you think would might happen to these comparisons if you were to generate [math]1000[/math] observations, rather than just [math]100[/math]?

Footnotes