Difference between revisions of "Probability Norm Exercises"

From ECLR
Jump to: navigation, search
 
(7 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
 +
 +
= Exercises =
 +
 +
Worked solutions to these exercises can be found here: [http://youtu.be/oh0VqlocRIA?hd=1 Q1], [http://youtu.be/KyZO83ELn_Q?hd=1 Q2] and [http://youtu.be/b-Omr-IqDhE?hd=1 Q3]
  
 
<ol>
 
<ol>
<li><p>[L1, L2] Find the number <math>z_{0}</math> such that if <math>Z\sim N(0,1)</math></p>
+
<li><p>[L1,L2] If <math>X\sim N(0,1)</math> evaluate</p>
 
<ol>
 
<ol>
<li><p><math>\Pr (Z\geq z_{0})=0.05</math></p></li>
+
<li><p><math>\Pr (X\leq 0.23)</math> {Solution: 0.5910}</p></li>
<li><p><math>\Pr (Z<-z_{0})=0.025</math></p></li>
+
<li><p><math>\Pr (X\geq 0.23)</math> {0.4090}</p></li>
<li><p><math>\Pr (-z_{0}<Z\leq z_{0})=0.95</math></p></li></ol>
+
<li><p><math>\Pr (-0.5 \leq X \leq 1.84)</math> {0.6586}</p></li></ol>
 +
</li>
 +
<li><p>[L1,L2] Find the number <math>z_{0}</math> such that if <math>Z\sim N(0,1)</math></p>
 +
<ol>
 +
<li><p><math>\Pr (Z\geq z_{0})=0.05</math> {1.645}</p></li>
 +
<li><p><math>\Pr (Z<-z_{0})=0.025</math> {1.96}</p></li>
 +
<li><p><math>\Pr (-z_{0}<Z\leq z_{0})=0.95</math> {1.96}</p></li></ol>
  
 
<p>and check your answers using EXCEL.</p></li>
 
<p>and check your answers using EXCEL.</p></li>
 
<li><p>[L1,L2] If <math>X\sim N(4,0.16)</math> evaluate</p>
 
<li><p>[L1,L2] If <math>X\sim N(4,0.16)</math> evaluate</p>
 
<ol>
 
<ol>
<li><p><math>\Pr (X\geq 4.2)</math></p></li>
+
<li><p><math>\Pr (X\geq 4.2)</math> {0.3085}</p></li>
<li><p><math>\Pr (3.9<X\leq 4.3)</math></p></li>
+
<li><p><math>\Pr (3.9<X\leq 4.3)</math> {0.3721}</p></li>
<li><p><math>\Pr \left( (X\leq 3.8)\cup (X\geq 4.2)\right) </math></p></li></ol>
+
<li><p><math>\Pr \left( (X\leq 3.8)\cup (X\geq 4.2)\right)</math> {0.6170}</p></li></ol>
 +
 
 +
<p>and check your answers using EXCEL. (Note for part (c), define the “events” <math>A=\left( X\leq 3.8\right) </math> and <math>B=\left( X\geq 4.2\right) </math> and calculate <math>\Pr \left( A\cup B\right)</math>.</p></li></ol>
  
<p>and check your answers using EXCEL. (Note for part (c), define the “events” <math>A=\left( X\leq 3.8\right) </math> and <math>B=\left( X\geq 4.2\right) </math> and calculate <math>\Pr \left( A\cup B\right)</math>.</p></li>
+
= Footnotes =
</ol>
 

Latest revision as of 13:07, 5 September 2014


Exercises

Worked solutions to these exercises can be found here: Q1, Q2 and Q3

  1. [L1,L2] If [math]X\sim N(0,1)[/math] evaluate

    1. [math]\Pr (X\leq 0.23)[/math] {Solution: 0.5910}

    2. [math]\Pr (X\geq 0.23)[/math] {0.4090}

    3. [math]\Pr (-0.5 \leq X \leq 1.84)[/math] {0.6586}

  2. [L1,L2] Find the number [math]z_{0}[/math] such that if [math]Z\sim N(0,1)[/math]

    1. [math]\Pr (Z\geq z_{0})=0.05[/math] {1.645}

    2. [math]\Pr (Z\lt -z_{0})=0.025[/math] {1.96}

    3. [math]\Pr (-z_{0}\lt Z\leq z_{0})=0.95[/math] {1.96}

    and check your answers using EXCEL.

  3. [L1,L2] If [math]X\sim N(4,0.16)[/math] evaluate

    1. [math]\Pr (X\geq 4.2)[/math] {0.3085}

    2. [math]\Pr (3.9\lt X\leq 4.3)[/math] {0.3721}

    3. [math]\Pr \left( (X\leq 3.8)\cup (X\geq 4.2)\right)[/math] {0.6170}

    and check your answers using EXCEL. (Note for part (c), define the “events” [math]A=\left( X\leq 3.8\right) [/math] and [math]B=\left( X\geq 4.2\right) [/math] and calculate [math]\Pr \left( A\cup B\right)[/math].

Footnotes