Difference between revisions of "FctExampleCode"

From ECLR
Jump to: navigation, search
(OLSest.m)
(OLSest.m)
 
(4 intermediate revisions by the same user not shown)
Line 25: Line 25:
 
== <div id="OLSestm">OLSest.m </div>==
 
== <div id="OLSestm">OLSest.m </div>==
  
Copy this code into a m file which you call OLSest.m or download file from here [[media:OLSest.m|OLSest.m]].
+
Copy this code into a m file which you call OLSest.m or download file from here ([[media:OLSest.m|OLSest.m]]).
  
 
<source>
 
<source>
Line 53: Line 53:
 
temp = (x(x(:,1)==1));
 
temp = (x(x(:,1)==1));
 
if length(temp) ~= length(x)
 
if length(temp) ~= length(x)
   x = [ones(length(x),1) x];  % add constant of not included in x
+
   x = [ones(length(x),1) x];  % add constant if not included in x
 
end
 
end
  
Line 71: Line 71:
 
bse  = sqrt(diag(bse));
 
bse  = sqrt(diag(bse));
 
tstat = b./bse;
 
tstat = b./bse;
pval  = 2*(1-tcdf(abs(tstat),n-k));
 
 
ym    = y - mean(y);
 
ym    = y - mean(y);
 
r2    = 1 - (res'*res)/(ym'*ym);
 
r2    = 1 - (res'*res)/(ym'*ym);
 
adjr2 = 1 - (n-1)*(1-r2)/(n-k);
 
adjr2 = 1 - (n-1)*(1-r2)/(n-k);
 
fstat = ((((ym'*ym))-(res'*res))/(k-1))/((res'*res)/(n-k));
 
fstat = ((((ym'*ym))-(res'*res))/(k-1))/((res'*res)/(n-k));
pvalf = 1- fcdf(fstat,k-1,n-k);
 
 
dw    = corrcoef([res(1:end-1) res(2:end)]);
 
dw    = corrcoef([res(1:end-1) res(2:end)]);
 
dw    = 2*(1-dw(2,1));  
 
dw    = 2*(1-dw(2,1));  
 +
 +
if output
 +
 +
    % calculate p values (requires either MATLAB stats toolbox or NAG toolbox
 +
 +
try      % if stats toolbox is available
 +
    pval  = 2*(1-tcdf(abs(tstat),n-k));
 +
    pvalf = 1- fcdf(fstat,k-1,n-k);
 +
catch
 +
    try    % if NAG toolbox is available
 +
        pval  = 2*(1-g01eb(abs(tstat),n-k));
 +
        pvalf = g01ed(fstat,k-1,n-k,'tail','U');
 +
    catch
 +
        pval = -999*ones(size(tstat));
 +
        pvalf = -999;
 +
    end
 +
end
  
if output
 
 
fprintf('===========================================================\n');
 
fprintf('===========================================================\n');
 
fprintf('===== Regression Output  ==================================\n');
 
fprintf('===== Regression Output  ==================================\n');
Line 96: Line 110:
 
fprintf(' Durbin-Watson  = %5.4f\n',dw);
 
fprintf(' Durbin-Watson  = %5.4f\n',dw);
 
fprintf('===========================================================\n');
 
fprintf('===========================================================\n');
 +
fprintf('== p-values of -999 indicate that neither the stat ========\n');
 +
fprintf('== nor the NAG toolbox were available =====================\n');
 +
 
end
 
end
temp = 2;</source>
+
</source>

Latest revision as of 13:16, 26 October 2012

Example MATLAB Code

This code is to be used with the Function discussion.

FunctionExample.m

Copy this code into a m file which you call FunctionExample.m.

% This code loads data from a spreadsheet and uses OLSest to run a
% regresion

[data,titles]=xlsread('OLSexample.xls');

n = size(data,1);
depvar = data(:,1);
expvar = [ones(n,1) data(:,2:end)];

[bhat,bhatse,resids,obs,resss,rsq] = OLSest(depvar,expvar,0);
disp(bhat);

temp = 2;

OLSest.m

Copy this code into a m file which you call OLSest.m or download file from here (OLSest.m).

function [b,bse,res,n,rss,r2] = OLSest(y,x,output);
% This function performs an OLS estimation
% function [b,bse,res,n,rss,r2] = OLSest(y,x,output)
% input:    y, vector with dependent variable
%           x, matrix with explanatory variable 
%               function will automatically add a constant if the first col
%               is not a vector  of ones
%           output, 1 = printed output
% output:   b, estimated parameters
%           bse, standard errors for bhat
%           res, estimated residuals
%           n, number of observations used
%           rss, residual sum of squares
%           r2, Rsquared

% select those rows that have observations for all variables
ninit = length(y);
testnan = [isnan(y) isnan(x)];
testnan = (sum(testnan,2)==0);
y = y(testnan);
x = x(testnan,:);
% test whether first column is vector of ones
temp = (x(x(:,1)==1));
if length(temp) ~= length(x)
  x = [ones(length(x),1) x];  % add constant if not included in x
end



[n,k] = size(x);        % sample size - n, number of explan vars (incl constant) - k   
xxi   = inv(x'*x);      % Note that this is the inefficient way of calculating 
                        % the inverse of x'*x, but as xxi is required later for 
                        % the calculation of bse, we are not really loosing
                        % anything
b     = xxi*x'*y;
res   = y - x*b;
rss   = res'*res;
ssq   = rss/(n-k);
s     = sqrt(ssq);
bse   = ssq*xxi;
bse   = sqrt(diag(bse));
tstat = b./bse;
ym    = y - mean(y);
r2    = 1 - (res'*res)/(ym'*ym);
adjr2 = 1 - (n-1)*(1-r2)/(n-k);
fstat = ((((ym'*ym))-(res'*res))/(k-1))/((res'*res)/(n-k));
dw    = corrcoef([res(1:end-1) res(2:end)]);
dw    = 2*(1-dw(2,1)); 
 
if output

    % calculate p values (requires either MATLAB stats toolbox or NAG toolbox

try      % if stats toolbox is available
    pval  = 2*(1-tcdf(abs(tstat),n-k));
    pvalf = 1- fcdf(fstat,k-1,n-k);
catch
    try     % if NAG toolbox is available
        pval  = 2*(1-g01eb(abs(tstat),n-k));
        pvalf = g01ed(fstat,k-1,n-k,'tail','U');
    catch
        pval = -999*ones(size(tstat));
        pvalf = -999;
    end
end

fprintf('===========================================================\n');
fprintf('===== Regression Output  ==================================\n');
fprintf('Obs used = %4.0f, missing obs = %4.0f \n',n,(ninit-n));
fprintf('Rsquared = %5.4f \n',r2);
fprintf('adj_Rsq  = %5.4f \n',adjr2);
fprintf('===== Estimated Model Parameters ==========================\n');
fprintf('=   Par       se(Par)   t(Par)    pval  ==================\n');
format short;
disp([b bse tstat pval]);
fprintf('===== Model Statistics ====================================\n');
fprintf(' Fstat = %5.4f (%5.4f)\n',[fstat;pvalf]);
fprintf(' standard error = %5.4f\n',sqrt(ssq));
fprintf(' RSS = %5.4f\n',rss);
fprintf(' Durbin-Watson  = %5.4f\n',dw);
fprintf('===========================================================\n');
fprintf('== p-values of -999 indicate that neither the stat ========\n'); 
fprintf('== nor the NAG toolbox were available =====================\n');

end
Retrieved from "http://eclr.humanities.manchester.ac.uk/index.php?title=FctExampleCode&oldid=2504"