Difference between revisions of "Probability Norm Exercises"
Line 1: | Line 1: | ||
− | |||
= Exercises = | = Exercises = | ||
<ol> | <ol> | ||
− | <li><p>If <math>X\sim N(0,1)</math> evaluate</p> | + | <li><p><math>L1,L2</math> If <math>X\sim N(0,1)</math> evaluate</p> |
<ol> | <ol> | ||
<li><p><math>\Pr (X\leq 0.2)</math></p></li> | <li><p><math>\Pr (X\leq 0.2)</math></p></li> | ||
Line 9: | Line 8: | ||
<li><p><math>\Pr (-0.5 \leq X \leq 1.8)</math></p></li></ol> | <li><p><math>\Pr (-0.5 \leq X \leq 1.8)</math></p></li></ol> | ||
</li> | </li> | ||
− | <li><p>Find the number <math>z_{0}</math> such that if <math>Z\sim N(0,1)</math></p> | + | <li><p><math>L1,L2</math> Find the number <math>z_{0}</math> such that if <math>Z\sim N(0,1)</math></p> |
<ol> | <ol> | ||
<li><p><math>\Pr (Z\geq z_{0})=0.05</math></p></li> | <li><p><math>\Pr (Z\geq z_{0})=0.05</math></p></li> | ||
Line 16: | Line 15: | ||
<p>and check your answers using EXCEL.</p></li> | <p>and check your answers using EXCEL.</p></li> | ||
− | <li><p>If <math>X\sim N(4,0.16)</math> evaluate</p> | + | <li><p><math>L1,L2</math> If <math>X\sim N(4,0.16)</math> evaluate</p> |
<ol> | <ol> | ||
<li><p><math>\Pr (X\geq 4.2)</math></p></li> | <li><p><math>\Pr (X\geq 4.2)</math></p></li> |
Revision as of 15:28, 4 September 2014
Exercises
[math]L1,L2[/math] If [math]X\sim N(0,1)[/math] evaluate
[math]\Pr (X\leq 0.2)[/math]
[math]\Pr (X\geq 0.2)[/math]
[math]\Pr (-0.5 \leq X \leq 1.8)[/math]
[math]L1,L2[/math] Find the number [math]z_{0}[/math] such that if [math]Z\sim N(0,1)[/math]
[math]\Pr (Z\geq z_{0})=0.05[/math]
[math]\Pr (Z\lt -z_{0})=0.025[/math]
[math]\Pr (-z_{0}\lt Z\leq z_{0})=0.95[/math]
and check your answers using EXCEL.
[math]L1,L2[/math] If [math]X\sim N(4,0.16)[/math] evaluate
[math]\Pr (X\geq 4.2)[/math]
[math]\Pr (3.9\lt X\leq 4.3)[/math]
[math]\Pr \left( (X\leq 3.8)\cup (X\geq 4.2)\right) [/math]
and check your answers using EXCEL. (Note for part (c), define the “events” [math]A=\left( X\leq 3.8\right) [/math] and [math]B=\left( X\geq 4.2\right) [/math] and calculate [math]\Pr \left( A\cup B\right)[/math].