Difference between revisions of "Probability Norm Exercises"

From ECLR
Jump to: navigation, search
Line 2: Line 2:
  
 
= Exercises =
 
= Exercises =
 +
 +
Worked solutions to these exercises can be found here: [http://youtu.be/oh0VqlocRIA?hd=1 Q1]
  
 
<ol>
 
<ol>
<li><p><math>L1,L2</math> If <math>X\sim N(0,1)</math> evaluate</p>
+
<li><p><math>[L1,L2]</math> If <math>X\sim N(0,1)</math> evaluate</p>
 
<ol>
 
<ol>
 
<li><p><math>\Pr (X\leq 0.23)</math> {Solution: 0.5910}</p></li>
 
<li><p><math>\Pr (X\leq 0.23)</math> {Solution: 0.5910}</p></li>
Line 24: Line 26:
  
 
<p>and check your answers using EXCEL. (Note for part (c), define the “events” <math>A=\left( X\leq 3.8\right) </math> and <math>B=\left( X\geq 4.2\right) </math> and calculate <math>\Pr \left( A\cup B\right)</math>.</p></li></ol>
 
<p>and check your answers using EXCEL. (Note for part (c), define the “events” <math>A=\left( X\leq 3.8\right) </math> and <math>B=\left( X\geq 4.2\right) </math> and calculate <math>\Pr \left( A\cup B\right)</math>.</p></li></ol>
 +
  
 
= Footnotes =
 
= Footnotes =

Revision as of 12:13, 5 September 2014


Exercises

Worked solutions to these exercises can be found here: Q1

  1. [math][L1,L2][/math] If [math]X\sim N(0,1)[/math] evaluate

    1. [math]\Pr (X\leq 0.23)[/math] {Solution: 0.5910}

    2. [math]\Pr (X\geq 0.23)[/math] {0.4090}

    3. [math]\Pr (-0.5 \leq X \leq 1.84)[/math] {0.6586}

  2. [math]L1,L2[/math] Find the number [math]z_{0}[/math] such that if [math]Z\sim N(0,1)[/math]

    1. [math]\Pr (Z\geq z_{0})=0.05[/math] {1.645}

    2. [math]\Pr (Z\lt -z_{0})=0.025[/math] {1.96}

    3. [math]\Pr (-z_{0}\lt Z\leq z_{0})=0.95[/math] {1.96}

    and check your answers using EXCEL.

  3. [math]L1,L2[/math] If [math]X\sim N(4,0.16)[/math] evaluate

    1. [math]\Pr (X\geq 4.2)[/math] {0.3085}

    2. [math]\Pr (3.9\lt X\leq 4.3)[/math] {0.3721}

    3. [math]\Pr \left( (X\leq 3.8)\cup (X\geq 4.2)\right)[/math] {0.6170}

    and check your answers using EXCEL. (Note for part (c), define the “events” [math]A=\left( X\leq 3.8\right) [/math] and [math]B=\left( X\geq 4.2\right) [/math] and calculate [math]\Pr \left( A\cup B\right)[/math].


Footnotes