Difference between revisions of "Probability Norm Exercises"

From ECLR
Jump to: navigation, search
Line 2: Line 2:
  
 
<ol>
 
<ol>
<li><p>[L1,L2] If <math>X\sim N(0,1)</math> evaluate</p>
+
<li><p><math>L1,L2</math> If <math>X\sim N(0,1)</math> evaluate</p>
 
<ol>
 
<ol>
<li><p><math>\Pr (X\leq 0.23)</math></p></li>
+
<li><p><math>\Pr (X\leq 0.23)</math> Solution: 0.5910</p></li>
<li><p><math>\Pr (X\geq 0.23)</math></p></li>
+
<li><p><math>\Pr (X\geq 0.23)</math> 0.4090</p></li>
<li><p><math>\Pr (-0.5 \leq X \leq 1.84)</math></p></li></ol>
+
<li><p><math>\Pr (-0.5 \leq X \leq 1.84)</math> 0.6586</p></li></ol>
 
</li>
 
</li>
<li><p>[L1,L2] Find the number <math>z_{0}</math> such that if <math>Z\sim N(0,1)</math></p>
+
<li><p><math>L1,L2</math> Find the number <math>z_{0}</math> such that if <math>Z\sim N(0,1)</math></p>
 
<ol>
 
<ol>
<li><p><math>\Pr (Z\geq z_{0})=0.05</math></p></li>
+
<li><p><math>\Pr (Z\geq z_{0})=0.05</math> 1.645</p></li>
<li><p><math>\Pr (Z<-z_{0})=0.025</math></p></li>
+
<li><p><math>\Pr (Z<-z_{0})=0.025</math> 1.96</p></li>
<li><p><math>\Pr (-z_{0}<Z\leq z_{0})=0.95</math></p></li></ol>
+
<li><p><math>\Pr (-z_{0}<Z\leq z_{0})=0.95</math> 1.96</p></li></ol>
  
 
<p>and check your answers using EXCEL.</p></li>
 
<p>and check your answers using EXCEL.</p></li>
<li><p>[L1,L2] If <math>X\sim N(4,0.16)</math> evaluate</p>
+
<li><p><math>L1,L2</math> If <math>X\sim N(4,0.16)</math> evaluate</p>
 
<ol>
 
<ol>
<li><p><math>\Pr (X\geq 4.2)</math></p></li>
+
<li><p><math>\Pr (X\geq 4.2)</math> 0.3085</p></li>
<li><p><math>\Pr (3.9<X\leq 4.3)</math></p></li>
+
<li><p><math>\Pr (3.9<X\leq 4.3)</math> 0.3721</p></li>
<li><p><math>\Pr \left( (X\leq 3.8)\cup (X\geq 4.2)\right) </math></p></li></ol>
+
<li><p><math>\Pr \left( (X\leq 3.8)\cup (X\geq 4.2)\right)</math> 0.6170</p></li></ol>
  
 
<p>and check your answers using EXCEL. (Note for part (c), define the “events” <math>A=\left( X\leq 3.8\right) </math> and <math>B=\left( X\geq 4.2\right) </math> and calculate <math>\Pr \left( A\cup B\right)</math>.</p></li></ol>
 
<p>and check your answers using EXCEL. (Note for part (c), define the “events” <math>A=\left( X\leq 3.8\right) </math> and <math>B=\left( X\geq 4.2\right) </math> and calculate <math>\Pr \left( A\cup B\right)</math>.</p></li></ol>
 +
  
 
= Footnotes =
 
= Footnotes =

Revision as of 12:05, 5 September 2014

Exercises

  1. [math]L1,L2[/math] If [math]X\sim N(0,1)[/math] evaluate

    1. [math]\Pr (X\leq 0.23)[/math] Solution: 0.5910

    2. [math]\Pr (X\geq 0.23)[/math] 0.4090

    3. [math]\Pr (-0.5 \leq X \leq 1.84)[/math] 0.6586

  2. [math]L1,L2[/math] Find the number [math]z_{0}[/math] such that if [math]Z\sim N(0,1)[/math]

    1. [math]\Pr (Z\geq z_{0})=0.05[/math] 1.645

    2. [math]\Pr (Z\lt -z_{0})=0.025[/math] 1.96

    3. [math]\Pr (-z_{0}\lt Z\leq z_{0})=0.95[/math] 1.96

    and check your answers using EXCEL.

  3. [math]L1,L2[/math] If [math]X\sim N(4,0.16)[/math] evaluate

    1. [math]\Pr (X\geq 4.2)[/math] 0.3085

    2. [math]\Pr (3.9\lt X\leq 4.3)[/math] 0.3721

    3. [math]\Pr \left( (X\leq 3.8)\cup (X\geq 4.2)\right)[/math] 0.6170

    and check your answers using EXCEL. (Note for part (c), define the “events” [math]A=\left( X\leq 3.8\right) [/math] and [math]B=\left( X\geq 4.2\right) [/math] and calculate [math]\Pr \left( A\cup B\right)[/math].


Footnotes