Difference between revisions of "Probability Norm Exercises"
Line 2: | Line 2: | ||
= Exercises = | = Exercises = | ||
+ | |||
+ | Worked solutions to these exercises can be found here: [http://youtu.be/oh0VqlocRIA?hd=1 Q1] | ||
<ol> | <ol> | ||
− | <li><p><math>L1,L2</math> If <math>X\sim N(0,1)</math> evaluate</p> | + | <li><p><math>[L1,L2]</math> If <math>X\sim N(0,1)</math> evaluate</p> |
<ol> | <ol> | ||
<li><p><math>\Pr (X\leq 0.23)</math> {Solution: 0.5910}</p></li> | <li><p><math>\Pr (X\leq 0.23)</math> {Solution: 0.5910}</p></li> | ||
Line 24: | Line 26: | ||
<p>and check your answers using EXCEL. (Note for part (c), define the “events” <math>A=\left( X\leq 3.8\right) </math> and <math>B=\left( X\geq 4.2\right) </math> and calculate <math>\Pr \left( A\cup B\right)</math>.</p></li></ol> | <p>and check your answers using EXCEL. (Note for part (c), define the “events” <math>A=\left( X\leq 3.8\right) </math> and <math>B=\left( X\geq 4.2\right) </math> and calculate <math>\Pr \left( A\cup B\right)</math>.</p></li></ol> | ||
+ | |||
= Footnotes = | = Footnotes = |
Revision as of 12:13, 5 September 2014
Exercises
Worked solutions to these exercises can be found here: Q1
[math][L1,L2][/math] If [math]X\sim N(0,1)[/math] evaluate
[math]\Pr (X\leq 0.23)[/math] {Solution: 0.5910}
[math]\Pr (X\geq 0.23)[/math] {0.4090}
[math]\Pr (-0.5 \leq X \leq 1.84)[/math] {0.6586}
[math]L1,L2[/math] Find the number [math]z_{0}[/math] such that if [math]Z\sim N(0,1)[/math]
[math]\Pr (Z\geq z_{0})=0.05[/math] {1.645}
[math]\Pr (Z\lt -z_{0})=0.025[/math] {1.96}
[math]\Pr (-z_{0}\lt Z\leq z_{0})=0.95[/math] {1.96}
and check your answers using EXCEL.
[math]L1,L2[/math] If [math]X\sim N(4,0.16)[/math] evaluate
[math]\Pr (X\geq 4.2)[/math] {0.3085}
[math]\Pr (3.9\lt X\leq 4.3)[/math] {0.3721}
[math]\Pr \left( (X\leq 3.8)\cup (X\geq 4.2)\right)[/math] {0.6170}
and check your answers using EXCEL. (Note for part (c), define the “events” [math]A=\left( X\leq 3.8\right) [/math] and [math]B=\left( X\geq 4.2\right) [/math] and calculate [math]\Pr \left( A\cup B\right)[/math].