Difference between revisions of "Probability MomentsExp Exercises"

From ECLR
Jump to: navigation, search
Line 7: Line 7:
 
<ol>
 
<ol>
  
<li><p>Suppose that <math>X</math> is a Binomial random variable with parameters <math>n=3,</math> <math>\pi =0.5,</math> show by direct calculation that <math>E\left[ X\right] =1.5</math> and <math>var \left[ X\right] =0.75</math>.</p></li>
+
<li><p>[L2] Suppose that <math>X</math> is a Binomial random variable with parameters <math>n=3,</math> <math>\pi =0.5,</math> show by direct calculation that <math>E\left[ X\right] =1.5</math> and <math>var \left[ X\right] =0.75</math>.</p></li>
<li><p>The continuous random variable <math>X</math> has probability density function given by</p>
+
<li><p>[L2] The continuous random variable <math>X</math> has probability density function given by</p>
 
<p><math>f(x)=\left\{\begin{array}{c}0.1+kx,\quad 0\leq x\leq 5, \\
 
<p><math>f(x)=\left\{\begin{array}{c}0.1+kx,\quad 0\leq x\leq 5, \\
 
0,\quad \text{otherwise}.
 
0,\quad \text{otherwise}.
Line 17: Line 17:
 
<li><p>Evaluate <math>E[X]</math> and <math>var[X]</math>.</p></li></ol>
 
<li><p>Evaluate <math>E[X]</math> and <math>var[X]</math>.</p></li></ol>
 
</li>
 
</li>
<li><p>Use the random number generator in EXCEL to obtain <math>100</math> observations from a <math>N\left( 2,1\right) </math> distribution. When doing so, enter the ''last four digits'' from your registration number in the '''Random Seed''' field.</p>
+
<li><p>[L2] Use the random number generator in EXCEL to obtain <math>100</math> observations from a <math>N\left( 2,1\right) </math> distribution. When doing so, enter the ''last four digits'' from your registration number in the '''Random Seed''' field.</p>
 
<p>Use EXCEL to calculate the following:</p>
 
<p>Use EXCEL to calculate the following:</p>
 
<ol>
 
<ol>

Revision as of 13:33, 5 September 2014



Exercises

  1. [L2] Suppose that [math]X[/math] is a Binomial random variable with parameters [math]n=3,[/math] [math]\pi =0.5,[/math] show by direct calculation that [math]E\left[ X\right] =1.5[/math] and [math]var \left[ X\right] =0.75[/math].

  2. [L2] The continuous random variable [math]X[/math] has probability density function given by

    [math]f(x)=\left\{\begin{array}{c}0.1+kx,\quad 0\leq x\leq 5, \\ 0,\quad \text{otherwise}. \end{array} \right.[/math]

    1. Find the value of the constant, [math]k[/math], which ensures that this is a proper density function.

    2. Evaluate [math]E[X][/math] and [math]var[X][/math].

  3. [L2] Use the random number generator in EXCEL to obtain [math]100[/math] observations from a [math]N\left( 2,1\right) [/math] distribution. When doing so, enter the last four digits from your registration number in the Random Seed field.

    Use EXCEL to calculate the following:

    1. the simple average and variance of these [math]100[/math] observations

    2. the proportion of observations which are less than [math]1.[/math]

    Now compare these with

    1. the theoretical mean and variance of a [math]N\left( 2,1\right)[/math] distribution

    2. the probability that a random variable, with a [math]N\left( 2,1\right)[/math] distribution, is less than [math]1[/math].

    What do you think would might happen to these comparisons if you were to generate [math]1000[/math] obervations, rather than just [math]100[/math]?

Footnotes