FctExampleCode

From ECLR
Revision as of 21:23, 4 October 2012 by Admin (talk | contribs) (OLSest.m)
Jump to: navigation, search

Example MATLAB Code

This code is to be used with the Function discussion.

FunctionExample.m

Copy this code into a m file which you call FunctionExample.m.

% This code loads data from a spreadsheet and uses OLSest to run a
% regresion

[data,titles]=xlsread('OLSexample.xls');

n = size(data,1);
depvar = data(:,1);
expvar = [ones(n,1) data(:,2:end)];

[bhat,bhatse,resids,obs,resss,rsq] = OLSest(depvar,expvar,0);
disp(bhat);

temp = 2;

OLSest.m

Copy this code into a m file which you call OLSest.m or download file from here (OLSest.m).

<source>

function [b,bse,res,n,rss,r2] = OLSest(y,x,output); % This function performs an OLS estimation % function [b,bse,res,n,rss,r2] = OLSest(y,x,output) % input: y, vector with dependent variable % x, matrix with explanatory variable % function will automatically add a constant if the first col % is not a vector of ones % output, 1 = printed output % output: b, estimated parameters % bse, standard errors for bhat % res, estimated residuals % n, number of observations used % rss, residual sum of squares % r2, Rsquared

% select those rows that have observations for all variables ninit = length(y); testnan = [isnan(y) isnan(x)]; testnan = (sum(testnan,2)==0); y = y(testnan); x = x(testnan,:); % test whether first column is vector of ones temp = (x(x(:,1)==1)); if length(temp) ~= length(x)

 x = [ones(length(x),1) x];  % add constant of not included in x

end


[n,k] = size(x);  % sample size - n, number of explan vars (incl constant) - k xxi = inv(x'*x);  % Note that this is the inefficient way of calculating

                       % the inverse of x'*x, but as xxi is required later for 
                       % the calculation of bse, we are not really loosing
                       % anything

b = xxi*x'*y; res = y - x*b; rss = res'*res; ssq = rss/(n-k); s = sqrt(ssq); bse = ssq*xxi; bse = sqrt(diag(bse)); tstat = b./bse; ym = y - mean(y); r2 = 1 - (res'*res)/(ym'*ym); adjr2 = 1 - (n-1)*(1-r2)/(n-k); fstat = ((((ym'*ym))-(res'*res))/(k-1))/((res'*res)/(n-k)); dw = corrcoef([res(1:end-1) res(2:end)]); dw = 2*(1-dw(2,1));

if output

   % calculate p values (requires either MATLAB stats toolbox or NAG toolbox

try  % if stats toolbox is available

   pval  = 2*(1-tcdf(abs(tstat),n-k));
   pvalf = 1- fcdf(fstat,k-1,n-k);

catch

   try     % if NAG toolbox is available
       pval  = 2*(1-g01eb(abs(tstat),n-k));
       pvalf = g01ed(fstat,k-1,n-k,'tail','U');
   catch
       pval = -999*ones(size(tstat));
       pvalf = -999;
   end

end

fprintf('===========================================================\n'); fprintf('===== Regression Output ==================================\n'); fprintf('Obs used = %4.0f, missing obs = %4.0f \n',n,(ninit-n)); fprintf('Rsquared = %5.4f \n',r2); fprintf('adj_Rsq = %5.4f \n',adjr2); fprintf('===== Estimated Model Parameters ==========================\n'); fprintf('= Par se(Par) t(Par) pval ==================\n'); format short; disp([b bse tstat pval]); fprintf('===== Model Statistics ====================================\n'); fprintf(' Fstat = %5.4f (%5.4f)\n',[fstat;pvalf]); fprintf(' standard error = %5.4f\n',sqrt(ssq)); fprintf(' RSS = %5.4f\n',rss); fprintf(' Durbin-Watson = %5.4f\n',dw); fprintf('===========================================================\n'); fprintf('== p-values of -999 indicate that neither the stat ========\n'); fprintf('== nor the NAG toolbox were available =====================\n');

end

temp = 2;
Retrieved from "http://eclr.humanities.manchester.ac.uk/index.php?title=FctExampleCode&oldid=369"